Болезни Военный билет Призыв

Урок "сложение и вычитание многочленов". Сложение и вычитание многочленов

Определение 3.3. Одночленом называют выражение, представляющее собой произведение чисел, переменных и степеней с натуральным показателем.

Например, каждое из выражений ,
,
является одночленом.

Говорят, что одночлен имеет стандартный вид , если он содержит только один числовой множитель, стоящий на первом месте, а каждое произведение одинаковых переменных в нем представлено степенью. Числовой множитель одночлена, записного в стандартном виде, называют коэффициентом одночлена . Степенью одночлена называют сумму показателей степеней всех его переменных.

Определение 3.4. Многочленом называют сумму одночленов. Одночлены, из которых составлен многочлен, называют членами многочлена .

Подобные слагаемые – одночлены в многочлене – называют подобными членами многочлена .

Определение 3.5. Многочленом стандартного вида называют многочлен, в котором все слагаемые записаны в стандартном виде и приведены подобные члены. Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Например, – многочлен стандартного вида четвертой степени.

Действия над одночленами и многочленами

Сумму и разность многочленов можно преобразовать в многочлен стандартного вида. При сложении двух многочленов записываются все их члены и приводятся подобные члены. При вычитании знаки всех членов вычитаемого многочлена меняются на противоположные.

Например:

Члены многочлена можно разбивать на группы и заключать в скобки. Поскольку это тождественное преобразование, обратное раскрытию скобок, то устанавливается следующее правило заключения в скобки : если перед скобками ставится знак «плюс», то все члены, заключаемые в скобки, записывают с их знаками; если перед скобками ставится знак «минус», то все члены, заключаемые в скобки, записывают с противоположными знаками.

Например,

Правило умножения многочлена на многочлен : чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Например,

Определение 3.6. Многочленом от одной переменной степени называют выражение вида

где
– любые числа, которые называют коэффициентами многочлена , причем
,– целое неотрицательное число.

Если
, то коэффициентназываютстаршим коэффициентом многочлена
, одночлен
– его старшим членом , коэффициент свободным членом .

Если вместо переменной в многочлен
подставить действительное число, то в результате получится действительное число
, которое называютзначением многочлена
при
.

Определение 3.7. Число называют корнем многочлена
, если
.

Рассмотрим деление многочлена на многочлен, где
и- натуральные числа. Деление возможно, если степень многочлена-делимого
не меньше степени многочлена-делителя
, то есть
.

Разделить многочлен
на многочлен
,
,– значит найти два таких многочлена
и
, чтобы

При этом многочлен
степени
называютмногочленом-частным ,
остатком ,
.

Замечание 3.2. Если делитель
не нуль-многочлен, то деление
на
,
, всегда выполнимо, а частное и остаток определяются однозначно.

Замечание 3.3. В случае, когда
при всех , то есть

говорят, что многочлен
нацело делится
(или делится ) на многочлен
.

Деление многочленов выполняется аналогично делению многозначных чисел: сначала старший член многочлена-делимого делят на старший член многочлена-делителя, затем частное от деления этих членов, которое будет старшим членом многочлена-частного, умножают на многочлен-делитель и полученное произведение вычитают из многочлена-делимого. В результате получают многочлен – первый остаток, который делят на многочлен-делитель аналогичным образом и находят второй член многочлена-частного. Этот процесс продолжают до тех пор, пока получится нулевой остаток или степень многочлена остатка будет меньше степени многочлена-делителя.

При делении многочлена на двучлен можно воспользоваться схемой Горнера.

Схема Горнера

Пусть требуется разделить многочлен

на двучлен
. Обозначим частное от деления как многочлен

а остаток – . Значение, коэффициенты многочленов
,
и остатокзапишем в следующей форме:

В этой схеме каждый из коэффициентов
,
,
, …,получается из предыдущего числа нижней строки умножением на числои прибавлением к полученному результату соответствующего числа верхней строки, стоящего над искомым коэффициентом. Если какая-либо степеньв многочлене отсутствует, то соответствующий коэффициент равен нулю. Определив коэффициенты по приведенной схеме, записываем частное

и результат деления, если
,

или ,

если
,

Теорема 3.1. Для того чтобы несократимая дробь (

,

) была корнем многочлена
с целыми коэффициентами, необходимо, чтобы числобыло делителем свободного члена, а число- делителем старшего коэффициента.

Теорема 3.2. (Теорема Безу ) Остаток от деления многочлена
на двучлен
равен значению многочлена
при
, то есть
.

При делении многочлена
на двучлен
имеем равенство

Оно справедливо, в частности, при
, то есть
.

Пример 3.2. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

Пример 3.3. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

,

Пример 3.4. Разделить на
.

Решение.

В итоге получаем

Пример 3.5. Разделить
на
.

Решение. Проведем деление многочленов столбиком:

Тогда получаем

.

Иногда бывает полезным представление многочлена в виде равного ему произведения двух или нескольких многочленов. Такое тождественное преобразование называют разложением многочлена на множители . Рассмотрим основные способы такого разложения.

Вынесение общего множителя за скобки. Для того чтобы разложить многочлен на множители способом вынесения общего множителя за скобки, необходимо:

1) найти общий множитель. Для этого, если все коэффициенты многочлена – целые числа, в качестве коэффициента общего множителя рассматривают наибольший по модулю общий делитель всех коэффициентов многочлена, а каждую переменную, входящую во все члены многочлена, берут с наибольшем показателем, который она имеет в данном многочлене;

2) найти частное от деления данного многочлена на общий множитель;

3) записать произведение общего множителя и полученного частного.

Группировка членов. При разложении многочлена на множители способом группировки его члены разбиваются на две или более групп с таким расчетом, чтобы каждую из них можно было преобразовать в произведение, и полученные произведения имели бы общий множитель. После этого применяется способ вынесения за скобки общего множителя вновь преобразованных членов.

Применение формул сокращенного умножения. В тех случаях, когда многочлен, подлежащий разложению на множители, имеет вид правой части какой-либо формулы сокращенного умножения, его разложение на множители достигается применением соответствующей формулы, записанной в другом порядке.

Пусть

, тогда справедливы следующиеформулы сокращенного умножения:

Для

:

Если нечетное (

):

Бином Ньютона:

где
– число сочетаний изпо.

Введение новых вспомогательных членов. Данный способ заключается в том, что многочлен заменяется другим многочленом, тождественно равным ему, но содержащим другое число членов, путем введения двух противоположных членов или замены какого-либо члена тождественно равной ему суммой подобных одночленов. Замена производится с таким расчетом, чтобы к полученному многочлену можно было применить способ группировки членов.

Пример 3.6. .

Решение. Все члены многочлена содержат общий множитель
. Следовательно,.

Ответ: .

Пример 3.7.

Решение. Группируем отдельно члены, содержащие коэффициент , и члены, содержащие. Вынося за скобки общие множители групп, получаем:

.

Ответ:
.

Пример 3.8. Разложить на множители многочлен
.

Решение. Используя соответствующую формулу сокращенного умножения, получаем:

Ответ: .

Пример 3.9. Разложить на множители многочлен
.

Решение. Используя способ группировки и соответствующую формулу сокращенного умножения, получаем:

.

Ответ: .

Пример 3.10. Разложить на множители многочлен
.

Решение. Заменим на
, сгруппируем члены, применим формулы сокращенного умножения:

.

Ответ:
.

Пример 3.11. Разложить на множители многочлен

Решение. Так как ,
,
, то

Операции сложения и вычитания являются базовыми действиями во многих случаях решения алгебраических задач. В данном видео мы рассмотрим основные принципы работы с многочленами.

Для начала напомним, что многочленом называется такое выражение, которое состоит из нескольких различных одночленов, или мономов. При этом каждый такой моном представляет собой либо числовое значение, либо переменную. Порой переменные группируются умножением или делением, а также могут иметь свой числовой коэффициент.

В предыдущих видеолекциях мы рассматривали приведение подобных слагаемы - упрощение любого многочлена до стандартного вида. Сразу стоит вставить ремарку, что подобные действия прямо взаимосвязаны с операциями сложения и вычитания внутри одного многочлена. Но при этом в случае алгебраических операций с несколькими многочленами предварительное упрощение может быть лишним и усложнить задачу. Будет более корректно стандартизовать уже итоговый полином. Ведь чем больше одночленов в многочлене, тем проще найти подобные слагаемые. Поэтому если стоит задача сложить или вычесть два многочлена - не стоит их сразу же приводить к стандартному виду.

В линейной алгебре принято многочлены в одном ряду записывать в отдельных скобках. Это помогает правильно раскрывать знак. Итак, если у нас есть два многочлена, то мы записываем их в ряд, и ставим необходимый знак между скобками:

(а 2 + с 3 - 7) + (3а 2 - 2с 3 +3)

Для решения данного выражения достаточно просто провести обычное алгебраическое сложение. Для этого, раскрываем скобки, памятуя о правилах сохранения знаков. При сложении (когда стоит плюс) все знаки сохраняются в неизменном виде, скобки легко можно опустить. Записываем выражение в новом виде:

а 2 + с 3 - 7 + 3а 2 - 2с 3 +3 =

4а 2 - 1с 3 - 4 = 4а 2 - с 3 - 4

Получившийся многочлен обрабатываем по правилам приведения подобных слагаемых, находим общие переменные, сокращаем все схожие значения. Иногда применяем ступенчатое сложение или вычитание для определенных мономов. В итоге, наше выражение сокращается до стандартного вида, являющегося ответом на заданный пример. Стоит понимать, что, формально, суммой многочлена, в данном случае, является выражение:

а 2 + с 3 - 7 + 3а 2 - 2с 3 +3

Не будет считаться ошибкой, если указать в ответе именно его. Но, по законам алгоритмов алгебраических вычислений, конечный ответ для действий с многочленами должен быть максимально упрощен, т.е. приведен к стандартному виду.
Операции вычитания проводятся таким же образом, только с учетом того факта, что знак «минус» перед скобками поменяет знак внутри:

(а 2 + с 3 - 7) - (3а 2 - 2с 3 +3) =

А 2 + с 3 - 7 - 3а 2 + 2с 3 - 3=

2а 2 + 3с 3 - 10

Во втором многочлене (вычитаемом) из-за минуса полностью инвертированы знаки: на противоположные значения. После чего алгоритм решения полностью идентичен суммированию (чем, по сути, сведение многочлена к стандартному виду и является).

Иногда в некоторых задачах необходимо выполнять обратные действия - из многочлена составить определенную сумму или разность. Это бывает необходимо для дальнейшего решения, и условия разбивания полинома задаются реалиями самой задачи. К примеру, необходимо выражение вида:

3а 2 - 2с 3 +3

Задача в таком случае следующая: представить выражение как сумму многочленов, один из которых - 3а 2 . Это легко сделать, выделив скобками задаваемые многочлены. При этом, знаки можно не менять, так как плюс разрешает это делать:

3а 2 + (- 2с 3 +3)

Если же нужна разность многочленов, один из которых 3а 2 , то необходимо не только выделить многочлены скобками, но и поставить минус, инвертирующий знаки во втором многочлене:

3а 2 - (2с 3 -3)

Таким образом, задачи по сложению или вычитанию многочленов решаются достаточно просто, если умело использовать свойства алгебраического сложения.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Урок на тему:
"Сложение и вычитание многочленов. Правила и примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Развивающие и обучающие пособия в интернет-магазине "Интеграл"
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие к учебнику А.Г. Мордковича

Сложение многочленов

Ранее мы познакомились с понятием многочлена. Теперь научимся с многочленами работать. Это умение пригодится при решении сложных уравнений и других математических задач.

Вспомним определение: многочлен - это сумма одночленов!
Значит, чтобы сложить многочлены надо записать их как один многочлен, сохраняя знаки исходные членов.

Но, пока не наработан навык, будем складывать по определенному правилу:
1. Записываем многочлены в скобках и ставим между ними знаки "+".
2. Переписываем без скобок. Если в скобках у первого члена многочлена стоит знак минус, мы его пишем вместо плюса, который стоял перед скобкой. Остальные члены многочлена переписываем, сохраняя знаки.
3. Приводим получившийся многочлен к стандартному виду.

Примеры.
1) Сложить многочлены: a 3 + 2b + с и а 2 + 2b - 1.

Решение.

(а 3 + 2b + с) + (а 2 + 2b - 1).
2. Раскроим скобки: a 3 + 2b + с + а 2 + 2b - 1.

a 3 + 2b + с + а 2 + 2b - 1 = а 3 + 4b + с + а 2 - 1.
4. И запишем в красивом (стандартном) виде: a 3 + а 2 + 4b + с - 1.

2) Сложить многочлены: a 3 + 2b + с и -а 2 + 2b - 1.

Решение.
1. Запишем многочлены в скобках и поставим между скобками знак плюс:
(а 3 + 2b + с) + (-а 2 + 2b - 1).
2. Раскроим скобки: a 3 + 2b + с - а 2 + 2b - 1.
3. Сложим все, что складывается (привести подобные):
a 3 + 2b + с - а 2 + 2b - 1 = а 3 + 4b + с - а 2 - 1.
4. И запишем в красивом (стандартном) виде: a 3 - а 2 + 4b + с - 1.

Вычитание многочленов

Как при сложении, сначала записываем многочлены в скобках, но между скобками ставим знак "-". Просто убрать скобки, не получится. Нужно поменять знаки членов многочлена на противоположные. Это очень важно помнить, поскольку поможет избежать многих ошибок.

Попробуем решить пример 2 - (1 + 1). Сначала выполняем действия в скобках, потом - вычитание, получим ответ 0. Если просто убрать скобки, ответ будет 2. Если поменять знаки, ответ будет правильный 0.

Примеры.
1) Из многочлена а 3 b + 2ac - 5 вычесть многочлен 2a 3 b + ас + 5.

Решение.

(а 3 b + 2ac - 5) - (2a 3 b + ac + 5).
2. Раскроим скобки: а 3 b + 2ac - 5 - 2а 3 b - ac - 5.
3. Сложим все, что складывается (привести подобные):
а 3 b + 2ac - 5 - 2а 3 b - ac - 5 = -а 3 b + ac - 10.
4. И запишем в красивом (стандартном) виде: -а 3 b + ac - 10.

2) Из многочлена a 3 b + 2ac - 5 вычесть многочлен -2a 3 b + ас + 5.

Решение.
1. Запишем многочлены в скобках и поставим между скобками знак минус:
(а 3 b + 2ac - 5) - (-2a 3 b + ac + 5).
2. Раскроим скобки: а 3 b + 2ac - 5 + 2а 3 b - ac - 5.
Обратите внимание, первый минус в вычитаемом поменялся на плюс! (Всегда внимательно смотрим: где ставить плюс, где - минус? Знак перед скобкой накладывается на знак в скобке: плюс на плюс дает плюс, плюс на минус дает минус, минус на минус дает плюс.)
3. Сложим все, что складывается (привести подобные):
а 3 b + 2ac - 5 + 2a 3 b - ac - 5 = 3a 3 b + ac - 10.
4. И запишем в красивом (стандартном) виде: 3a 3 b + ac - 10.

Методы сложения и вычитания многочленов очень похожи, только при вычитании меняются знаки. Поэтому эти действия объединили в одно правило.

Чтобы найти алгебраическую сумму многочленов надо записать их в скобках и расставить знаки. Потом раскрыть скобки следующим образом: если перед скобкой стоит знак плюс, то знаки членов многочлена не меняются, если перед скобкой стоит знак минус, то знаки членов многочлена меняются на противоположные.

Пример.
Найдите алгебраическую сумму многочленов: А + В – С, где:
А = а 2 b + аb + 4;
В = -5a 2 b + 6ab - 5;
С = -4a 2 b + 3ab + 8.

Решение.
1. Запишем многочлены в скобках: (а 2 b + аb + 4) + (-5a 2 b + 6ab - 5) - (-4a 2 b + 3ab + 8).
2. Раскроим скобки: а 2 b + аb + 4 - 5a 2 b + 6ab - 5 + 4a 2 b - 3ab - 8.
3. Приведем подобные:
а 2 b + аb + 4 - 5a 2 b + 6ab - 5 + 4a 2 b - 3ab - 8 = 4ab – 9.
4. И запишем в стандартном виде: 4ab – 9.
Обратите внимание, что исчезли некоторые члены многочленов.
Действительно а 2 b - 5a 2 b + 4a 2 b = 0.
В таких случаях принято говорить, что a 2 b, 5a 2 b, 4a 2 b взаимно уничтожились.

Примеры для самостоятельного решения

Найти алгебраическую сумму многочленов А – В + С, где:
1) А = х 2 у + 2ху 2 - 3;
В = - 5х 2 у + 3ху + 6;
С = 2х 2 у - 3ху + 6.

2) А = – 4х 2 у + ху – 8;
В = 6х 2 у + 8ху + у;
С = – 3ху + х.

3) А = ху 2 – 7ху – х;
В = 9ху 2 + ху + 6;
С = 5ху 2 + 8ху + х.