Болезни Военный билет Призыв

В каких единицах измеряются данные физические величины. Физические величины и единицы их измерения. Система СИ. Метрическая система единиц

Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

где числовое значение величины, ее единица.

Следует различать истинное и действительное значения физической величины.

Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

Однако, пользуясь специальными техническими средствами, можно определить действительные

значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

Различают измерения прямые и косвенные.

Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.

Физических тел используются величины, характеризующие пространство, время и рассматриваемое тело: длина l, время t и масса m. Длина l определяется как геометрическое расстояние между двумя точками в пространстве.

В Международной системе единиц (СИ) за единицу длины принят метр (м).

\[\left=м\]

Первоначально метр определяли как десятимиллионную долю четверти земного меридиана. Этим создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0${}^\circ$ С. В настоящее время, ввиду возросших требований к точности измерений, метр определяется как длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983 г.

Время t между двумя событиями в заданной точке пространства определяется как разность показаний часов (прибора, работа которого основывается на строго периодическом и равномерном физическом процессе).

В Международной системе единиц (СИ) за единицу измерения времени принята секунда (с).

\[\left=c\]

Согласно современным представлениям, 1 секунда представляет собой интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0о К при отсутствии возмущения внешними полями. Это определение было принято в 1967 году (уточнение относительно температуры и состояния покоя появилось в 1997 году).

Масса m тела характеризует усилие, которое надо приложить, чтобы вывести его из положения равновесия, а также усилие, с которым оно способно притягивать другие тела. Это свидетельствует о дуализме понятия массы -- как меры инертности тела и меры его гравитационных свойств. Как свидетельствуют эксперименты, гравитационная и инертная масса тела равны, по крайней мере, в пределах точности измерений. Потому, кроме специальных случаев, говорят просто о массе -- не уточняя, инертной или гравитационной.

В Международной системе единиц (СИ) за единицу измерения массы принят килограмм.

$\left=кг\ $

За международный прототип килограмма принята масса цилиндра, сделанного из платино-иридиевого сплава, высотой и диаметром около 3,9 см, хранящегося в о дворце Бретейль под Парижем. Вес этой эталонной массы, равный 1 кг на уровне моря на географической широте 45${}^\circ$, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы. В практических измерениях 1 кг можно считать равным весу 1 л чистой воды при температуре +4оС.

В механике сплошных сред основными также являются единицы измерения термодинамической температуры и количества вещества.

Единицей измерения температуры в системе СИ служит Кельвин:

$\left[Т\right]=К$.

1 Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Температура является характеристикой энергии, которой обладают молекулы.

Количество вещества измеряют в молях: $\left=Моль$

1 Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

Прочие единицы измерения механических величин являются производными от основных, представляя собой их линейную комбинацию.

Производными от длины являются площадь S и объём V. Они характеризуют области пространств, соответственно, двух и трёх измерений, занимаемых протяжёнными телами.

Единицы измерения: площади -- метр квадратный, объёма -- метр кубический:

\[\left=м^2 \left=м^3\]

Единицей измерения скорости в СИ является метр в секунду: $\left=м/c$

Единица измерения силы в СИ --ньютон: $\left=Н$ $1Н=1\frac{кг\cdot м}{с^2}$

Такие же производные единицы измерения есть для всех других механических величин: плотности, давления, импульса, энергии, работы и т.д.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные наименования, например, единице радиан.

Приставки можно использовать перед наименованиями единиц. Они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

В технических системах измерений вместо единицы массы основной считается единица силы. Есть ряд других систем, близких к СИ, но использующих другие основные единицы. Например, в системе СГС, общепринятой до появления системы СИ, основной единицей измерения является грамм, а основной единицей длины -- сантиметр.

В науке и технике используются единицы измерения физических величин, образующие определенные системы. В основу совокупности единиц, устанавливаемой стандартом для обязательного применения, положены единицы Международной системы (СИ). В теоретических разделах физики широко используются единицы систем СГС: СГСЭ, СГСМ и симметричной Гауссовой системы СГС. Определенное применение находят также единицы технической системы МКГСС и некоторые внесистемные единицы.

Международная система (СИ) построена на 6 основных единицах (метр, килограмм, секунда, кельвин, ампер, кандела) и 2 дополнительных (радиан, стерадиан). В окончательной редакции проекта стандарта “Единицы физических величин” приведены: единицы системы СИ; единицы, допускаемые к применению наравне с единицами СИ, например: тонна, минута, час, градус Цельсия, градус, минута, секунда, литр, киловатт–час, оборот в секунду, оборот в минуту; единицы системы СГС и другие единицы, применяемые в теоретических разделах физики и астрономии: световой год, парсек, барн, электронвольт; единицы, временно допускаемые к применению такие, как: ангстрем, килограмм–сила, килограмм–сила–метр, килограмм–сила на квадратный сантиметр, миллиметр ртутного столба, лошадиная сила, калория, килокалория, рентген, кюри. Важнейшие из этих единиц и соотношения между ними приведены в табл.П1.

Сокращенные обозначения единиц, приведенные в таблицах, применяются только после числового значения величины или в заголовках граф таблиц. Нельзя применять сокращенные обозначения вместо полных наименований единиц в тексте без числового значения величин. При использовании как русских, так и международных обозначений единиц используется прямой шрифт; обозначения (сокращенные) единиц, названия которых даны по именам ученых (ньютон, паскаль, ватт и т.д.) следует писать с заглавной буквы (Н, Па, Вт); в обозначениях единиц точку как знак сокращения не применяют. Обозначения единиц, входящих в произведение, разделяются точками как знаками умножения; в качестве знака деления применяют обычно косую черту; если в знаменатель входит произведение единиц, то оно заключается в скобки.



Для образования кратных и дольных единиц используются десятичные приставки (см. табл. П2). Особенно рекомендуется применение приставок, представляющих собой степень числа 10 с показателем, кратным трем. Целесообразно использовать дольные и кратные единицы, образованные от единиц СИ и приводящие к числовым значениям, лежащим между 0,1 и 1000 (например: 17 000 Па следует записать как 17 кПа).

Не допускается присоединять две или более приставок к одной единице (например: 10 –9 м следует записать как 1 нм). Для образования единиц массы приставку присоединяют к основному наименованию “грамм” (например: 10 –6 кг= =10 –3 г=1 мг). Если сложное наименование исходной единицы представляет собой произведение или дробь, то приставку присоединяют к наименованию первой единицы (например кН∙м). В необходимых случаях допускается в знаменателе применять дольные единицы длины, площади и объема (например В/см).

В табл.П3 приведены основные физические и астрономические постоянные.

Таблица П1

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН В СИСТЕМЕ СИ

И ИХ СООТНОШЕНИЕ С ДРУГИМИ ЕДИНИЦАМИ

Наименование величин Единицы измерения Сокращенное обозначение Размер Коэффициент для приведения к единицам СИ
СГС МКГСС и внесистемные единицы
Основные единицы
Длина метр м 1 см=10 –2 м 1 Å=10 –10 м 1 св.год=9,46×10 15 м
Масса килогамм кг 1г=10 –3 кг
Время секунда с 1 ч=3600 с 1 мин=60 с
Температура кельвин К 1 0 С=1 К
Сила тока ампер А 1 СГСЭ I = =1/3×10 –9 А 1 СГСМ I =10 А
Сила света кандела кд
Дополнительные единицы
Плоский угол радиан рад 1 0 =p/180 рад 1¢=p/108×10 –2 рад 1²=p/648×10 –3 рад
Телесный угол стерадиан ср Полный телесный угол=4p ср
Производные единицы
Частота герц Гц с –1

Продолжение табл.П1

Угловая скорость радиан в секунду рад/с с –1 1 об/с=2p рад/с 1об/мин= =0,105 рад/с
Объем кубический метр м 3 м 3 1см 2 =10 –6 м 3 1 л=10 –3 м 3
Скорость метр в секунду м/с м×с –1 1см/с=10 –2 м/с 1км/ч=0,278 м/с
Плотность килограмм на куби-ческий метр кг/м 3 кг×м –3 1г/см 3 = =10 3 кг/м 3
Сила ньютон Н кг×м×с –2 1 дин=10 –5 Н 1 кг=9,81Н
Работа, энергия, количество тепла джоуль Дж (Н×м) кг×м 2 ×с –2 1 эрг=10 –7 Дж 1 кгс×м=9,81 Дж 1 эВ=1,6×10 –19 Дж 1 кВт×ч=3,6×10 6 Дж 1 кал=4,19 Дж 1 ккал=4,19×10 3 Дж
Мощность ватт Вт (Дж/с) кг×м 2 ×с –3 1эрг/с=10 –7 Вт 1л.с.=735Вт
Давление паскаль Па (Н/м 2) кг∙м –1 ∙с –2 1дин/см 2 =0,1Па 1 ат=1 кгс/см 2 = =0,981∙10 5 Па 1мм.рт.ст.=133 Па 1атм= =760 мм.рт.ст.= =1,013∙10 5 Па
Момент силы ньютон–метр Н∙м кгм 2 ×с –2 1 дин×см= =10 –7 Н×м 1 кгс×м=9,81 Н×м
Момент инерции килограмм–метр в квадрате кг×м 2 кг×м 2 1 г×см 2 = =10 –7 кг×м 2
Динамическая вязкость паскаль–секунда Па×с кг×м –1 ×с –1 1П/пуаз/= =0,1Па×с

Продолжение табл.П1

Кинематическая вязкость квадратный метр на секунду м 2 /с м 2 ×с –1 1Ст/стокс/= =10 –4 м 2 /с
Теплоемкость системы джоуль на кельвин Дж/К кг×м 2 х х с –2 ×К –1 1 кал/ 0 С=4,19 Дж/К
Удельная теплоемкость джоуль на килограмм–кельвин Дж/ (кг×К) м 2 ×с –2 ×К –1 1 ккал/(кг× 0 С)= =4,19×10 3 Дж/(кг×К)
Электрический заряд кулон Кл А×с 1СГСЭ q = =1/3×10 –9 Кл 1СГСМ q = =10 Кл
Потенциал, электрическое напряжение вольт В (Вт/А) кг×м 2 х х с –3 ×А –1 1СГСЭ u = =300 В 1СГСМ u = =10 –8 В
Напряженность электрического поля вольт на метр В/м кг×м х х с –3 ×А –1 1 СГСЭ Е = =3×10 4 В/м
Электрическое смещение (электрическая индукция) кулон на квадратный метр Кл/м 2 м –2 ×с×А 1СГСЭ D = =1/12p х х 10 –5 Кл/м 2
Электрическое сопротивление ом Ом (В/А) кг×м 2 ×с –3 х х А –2 1СГСЭ R = 9×10 11 Ом 1СГСМ R = 10 –9 Ом
Электрическая емкость фарад Ф (Кл/В) кг –1 ×м –2 х с 4 ×А 2 1СГСЭ С = 1 см= =1/9×10 –11 Ф

Окончание табл.П1

Магнитный поток вебер Вб (В×с) кг×м 2 ×с –2 х х А –1 1СГСМ ф = =1 Мкс (максвел) = =10 –8 Вб
Магнитная индукция тесла Тл (Вб/ м 2) кг×с –2 ×А –1 1СГСМ В = =1 Гс(гаусс)= =10 –4 Тл
Напряженность магнитного поля ампер на метр А/м м –1 ×А 1СГСМ Н = =1Э(эрстед)= =1/4p×10 3 А/м
Магнитодвижущая сила ампер А А 1СГСМ Fm
Индуктивность генри Гн (Вб/А) кг×м 2 х х с –2 ×А –2 1СГСМ L = 1 см= =10 –9 Гн
Световой поток люмен лм кд
Яркость кандела на квадратный метр кд/м 2 м –2 ×кд
Освещенность люкс лк м –2 ×кд

Величина - это то, что можно измерить. Такие понятия, как длина, площадь, объём, масса, время, скорость и т. д. называют величинами. Величина является результатом измерения , она определяется числом, выраженным в определённых единицах. Единицы, в которых измеряется величина, называют единицами измерения .

Для обозначения величины пишут число, а рядом название единицы, в которой она измерялась. Например, 5 см, 10 кг, 12 км, 5 мин. Каждая величина имеет бесчисленное множество значений, например длина может быть равна: 1 см, 2 см, 3 см и т. д.

Одна и та же величина может быть выражена в разных единицах, например килограмм, грамм и тонна - это единицы измерения веса. Одна и та же величина в разных единицах выражается разными числами. Например, 5 см = 50 мм (длина), 1 ч = 60 мин (время), 2 кг = 2000 г (вес).

Измерить какую-нибудь величину - значит узнать, сколько раз в ней содержится другая величина того же рода, принятая за единицу измерения.

Например, мы хотим узнать точную длину какой-нибудь комнаты. Значит нам нужно измерить эту длину при помощи другой длины, которая нам хорошо известна, например при помощи метра. Для этого откладываем метр по длине комнаты столько раз, сколько можно. Если он уложится по длине комнаты ровно 7 раз, то длина её равна 7 метрам.

В результате измерения величины получается или именованное число , например 12 метров, или несколько именованных чисел, например 5 метров 7 сантиметров, совокупность которых называется составным именованным числом .

Меры

В каждом государстве правительство установило определённые единицы измерения для различных величин. Точно рассчитанная единица измерения, принятая в качестве образца, называется эталоном или образцовой единицей . Сделаны образцовые единицы метра, килограмма, сантиметра и т. п., по которым изготавливают единицы для обиходного употребления. Единицы, вошедшие в употребление и утверждённые государством, называются мерами .

Меры называются однородными , если они служат для измерения величин одного рода. Так, грамм и килограмм - меры однородные, так как они служат для измерения веса.

Единицы измерения

Ниже представлены единицы измерения различных величин, которые часто встречаются в задачах по математике:

Меры веса/массы

  • 1 тонна = 10 центнеров
  • 1 центнер = 100 килограмм
  • 1 килограмм = 1000 грамм
  • 1 грамм = 1000 миллиграмм
  • 1 километр = 1000 метров
  • 1 метр = 10 дециметров
  • 1 дециметр = 10 сантиметров
  • 1 сантиметр = 10 миллиметров

  • 1 кв. километр = 100 гектарам
  • 1 гектар = 10000 кв. метрам
  • 1 кв. метр = 10000 кв. сантиметров
  • 1 кв. сантиметр = 100 кв. миллиметрам
  • 1 куб. метр = 1000 куб. дециметров
  • 1 куб. дециметр = 1000 куб. сантиметров
  • 1 куб. сантиметр = 1000 куб. миллиметров

Рассмотрим ещё такую величину как литр . Для измерения вместимости сосудов употребляется литр. Литр является объёмом, который равен одному кубическому дециметру (1 литр = 1 куб. дециметру).

Меры времени

  • 1 век (столетие) = 100 годам
  • 1 год = 12 месяцам
  • 1 месяц = 30 суткам
  • 1 неделя = 7 суткам
  • 1 сутки = 24 часам
  • 1 час = 60 минутам
  • 1 минута = 60 секундам
  • 1 секунда = 1000 миллисекундам

Кроме того, используют такие единицы измерения времени, как квартал и декада.

  • квартал - 3 месяца
  • декада - 10 суток

Месяц принимается за 30 дней, если не требуется определить число и название месяца. Январь, март, май, июль, август, октябрь и декабрь - 31 день. Февраль в простом году - 28 дней, февраль в високосном году - 29 дней. Апрель, июнь, сентябрь, ноябрь - 30 дней.

Год представляет собой (приблизительно) то время, в течении которого Земля совершает полный оборот вокруг Солнца. Принято считать каждые три последовательных года по 365 дней, а следующий за ними четвёртый - в 366 дней. Год, содержащий в себе 366 дней, называется високосным , а годы, содержащие по 365 дней - простыми . К четвёртому году добавляют один лишний день по следующей причине. Время обращения Земли вокруг Солнца содержит в себе не ровно 365 суток, а 365 суток и 6 часов (приблизительно). Таким образом, простой год короче истинного года на 6 часов, а 4 простых года короче 4 истинных годов на 24 часа, т. е. на одни сутки. Поэтому к каждому четвёртому году добавляют одни сутки (29 февраля).

Об остальных видах величин вы узнаете по мере дальнейшего изучения различных наук.

Сокращённые наименования мер

Сокращённые наименования мер принято записывать без точки:

  • Километр - км
  • Метр - м
  • Дециметр - дм
  • Сантиметр - см
  • Миллиметр - мм

Меры веса/массы

  • тонна - т
  • центнер - ц
  • килограмм - кг
  • грамм - г
  • миллиграмм - мг

Меры площади (квадратные меры)

  • кв. километр - км 2
  • гектар - га
  • кв. метр - м 2
  • кв. сантиметр - см 2
  • кв. миллиметр - мм 2

  • куб. метр - м 3
  • куб. дециметр - дм 3
  • куб. сантиметр - см 3
  • куб. миллиметр - мм 3

Меры времени

  • век - в
  • год - г
  • месяц - м или мес
  • неделя - н или нед
  • сутки - с или д (день)
  • час - ч
  • минута - м
  • секунда - с
  • миллисекунда - мс

Мера вместимости сосудов

  • литр - л

Измерительные приборы

Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.

Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.

Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:

Цифрами 1, 2, 3, 4 и т. д. обозначены расстояния между штрихами, которые разделены на 10 одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует 1 мм. Эта величина называется ценой деления шкалы измерительного прибора.

Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.

Для того чтобы определить цену деления, необходимо:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величины.
  2. Вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.

Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).

Например, штрихи с обозначениями 20 °С и 30 °С. Расстояние между этими штрихами разделено на 10 делений. Таким образом, цена каждого деления будет равна:

(30 °С - 20 °С) : 10 = 1 °С

Следовательно, термометр показывает 47 °С.

Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.

Физические величины и их размерность

ФОРМИРОВАНИЕ У УЧАЩИХСЯ ПОНЯТИЙ О ФИЗИЧЕСКИХ ВЕЛИЧИНАХ И ЗАКОНАХ

Классификация физических величин

Единицы измерения физических величин. Системы единиц.

Проблемы формирования у учащихся физических понятий

Формирование у учащихся понятий о физических величинах методом фреймовых опор

Формирование у учащихся понятий о физических законах методом фреймовых опор

Физические величины и их размерность

Физической величиной называют свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта(Болсун, 1983)/

Совокупность ФВ связанных между собой зависимостями, называют системой физи­ческих величин. Система ФВ состоит из основных величин , которые условно приняты в каче­стве независимых, и из производных величин , которые выражаются через основные величины системы.

Производныефизическиевеличины - это физические величины, входящие в систему и определяемые через основные величины этой системы. Математическое соотношение (форму­ла), посредством которого интересующая нас производ­ная ФВ выражается в явном виде через другие величины системы и в котором проявляется непосредственная связь между ними, называется определяющим уравнением . Например, определяющим уравнением скорости служит соотношение

V = (1)

Опыт показывает, что система ФВ, охватывающая все разделы физики может быть построена на семи основных величинах: масса, время, длина, температура, сила света, количество вещества, сила электрического тока.

Учёные договорились обозначать основные ФВ символами: длину (расстояние) в любых уравнениях и любых системах символом L (с этой буквы начинается на английском и немецком языках слово длина), а время – символом T (с этой буквы начинается на английском языке слово время). То же самое относится и к размерностям массы (символ М), электрического тока (символ I), термодинамической температуры (символ Θ), количества вещества (символ

N), силы света (символ J). Эти символы называются размерностями длины и времени, массы и т.д., причем независимо от размера длины или времени. (Иногда эти символы называют логическими операторами, иногда – радика-лами, но чаще всего размерностями.) Таким образом, Размерность основной ФВ -это всего лишь символ ФВ в виде заглавной буквы латинского или греческого алфавита.
Так, например, размерность скорости – это символ скорости в виде двух букв LT −1 (согласно формуле (1)), где Т представляет собой размерность времени, а L - длины Эти символы обозначают ФВ времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т. д.). Размерность силы - MLT −2 (согласно уравнению второго закона Ньютона F = ma) . У любой производной ФВ имеется размерность, так как имеется уравнение, определяющее эту величину. В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей или проверка формулы размерностью .

По поводу понятия “размерность“ до сих пор имеются два противоположных мнения Проф. Коган И. Ш., в статье Размерность физической величины (Коган,) приводит следующие аргументы по поводу этого спора.. Более ста лет продолжаются споры о физическом смысле размерностей. Два мнения – размерность относится к физической величине, и размерность относится к единице измерений – уже целый век делят учёных на два лагеря. Первую точку зрения отстаивал известный физик начала ХХ века А.Зоммерфельд. Вторую точку зрения отстаивал выдающийся физик М.Планк, который считал размерность физической величины некоторой условностью. Известный метролог Л.Сена (1988) придерживался той точки зрения, согласно которой понятие размерности относится вообще не к физической величине, а к ее единице измерений. Эта же точка зрения изложена и в популярном учебнике по физике И.Савельева (2005).

Однако это противостояние искусственно. Размерность физической величины и ее единица измерений – различные физические категории, и их не следует сравнивать. В этом кроется суть ответа, решающего эту проблему.

Можно сказать, что у физической величины размерность имеется постольку, поскольку имеется уравнение, определяющее эту величину. Пока нет уравнения, нет и размерности, хотя от этого физическая величина не перестает существовать объективно. В существовании же размерности у единицы измерений физической величины объективной необходимости нет.

Опять же, размерности физических величин для одних и тех же физических величин должны быть одинаковыми на любой планете в любой звездной системе. В то же время единицы измерений тех же величин могут оказаться там какими угодно и, конечно же, не похожими на наши земные.

Подобный взгляд на проблему говорит о том, что правы и А.Зоммерфельд, и М.Планк . Просто каждый из них имел в виду разное. А.Зоммерфельд имел в виду размерности физических величин, а М.Планк − единицы измерений . Противопоставляя их взгляды друг другу, метрологи безосновательно приравнивают размерности физических величин к их единицам измерений, тем самым искусственно противопоставляя точки зрения А.Зоммерфельда и М.Планка.

В настоящем пособии понятие «размерность», как и полагается, относится к ФВ и с единицами ФВ не идентифицируется.