Болезни Военный билет Призыв

Вероятность и статистика – основные факты. Основы вероятностно-статистических методов описания неопределенностей

Огромный опыт, накопленный человечеством, учит нас, что явления, имеющие вероятность, весьма близкую к единице, почти обязательно происходят. Точно так же события, вероятность наступления которых очень мала (иными словами, очень близка к нулю), наступают очень редко. Это обстоятельство играет основную роль для всех практических выводов из теории вероятностей, так как указанный опытный факт даёт право в практической деятельности считать мало вероятные события практически невозможными, а события, происходящие с вероятностями, весьма близкими к единице, практически достоверными. При этом на вполне естественный вопрос, какова должна быть вероятность, чтобы мы могли событие считать практически невозможным (практически достоверным), однозначного ответа дать нельзя. И это понятно, так как в практической деятельности необходимо учитывать важность тех событий, с которыми приходится иметь дело.

Так, например, если бы при измерении расстояния между двумя пунктами оказалось, что оно равно 5340м и ошибка этого измерения с вероятностью 0,02 равна или больше (или меньше) 20м, то мы можем пренебречь возможностью такой ошибки и считать что расстояние действительно равно 5340м. Таким образом, в данном примере мы считаем событие с вероятностью 0,02 практически несущественным (практически невозможным) и в своей практической деятельности его не учитываем. В то же время в других случаях пренебрегать вероятностями 0,02 и даже ещё меньшими нельзя. Так, если при строительстве большой гидроэлектростанции, требующей огромных материальных затрат и человеческого труда, выяснилось, что вероятность катастрофического паводка в рассматриваемых условиях равна 0,02, то эта вероятность будет сочтена большой и при проектировании станции она должна быть обязательно учтена, а не отброшена, как это было сделано в предыдущем примере.

Таким образом, только требования практики могут нам подсказать критерии, согласно которым мы будем считать те или иные события практически невозможными или практически достоверными.

В то же время необходимо заметить, что любое событие, имеющее положительную вероятность, пусть даже близкую к нулю, может произойти. И если число испытаний, в каждом из которых оно может произойти с одной и той же вероятностью, очень велико, то вероятность хотя бы однократного его появления может стать сколь угодно близкой к единице. Это обстоятельство постоянно следует иметь в виду.

Из сказанного понятно, что в практической деятельности, да и в общетеоретических задачах, большое значении имеют события с вероятностями, близкими к единице или нулю. Отсюда становится ясным, что одной из основных задач теории вероятностей должно быть установление закономерностей, происходящих с вероятностями, близкими к единице; при этом особую роль должны играть закономерности, возникающие в результате наложения большого числа независимых или слабо зависимых случайных фактов.

Действительно, нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые мы не в состоянии. Казалось бы, что поскольку о каждой случайной величине мы располагаем в этом смысле весьма скромными сведениями, то вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. Оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Наличие связи между теоретическими и экспериментальными характеристиками случайных величин, проявляемой в большом числе опытов, позволяет предугадывать результаты массовых случайных явлений долей уверенности. Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в ряде предельных теорем, одна группа которых объединена под общим названием «Закон больших чисел», другая же – под общим названием «Центральная предельная теорема».

Закон больших чисел состоит из теорем Чебышева и Бернулли (имеются и другие теоремы), в которых доказывается приближение при определённых условиях среднего арифметического случайных величин к некоторым случайным характеристикам. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли – простейшим.

В другой же группе предельных теорем, объединённых под общим названием «Центральная предельная теорема», устанавливается факт приближения при определённых условиях закона распределения суммы случайных величин к нормальному закону распределения. Математически это выражается в виде условий, которые должны выполняться для рассматриваемых случайных величин, то есть необходимо выполнение некоторых условий для случайных величин
, при которых суммарная случайная величина
распределена по нормальному закону.

Таким образом, закон больших чисел и центральная теорема составляют две группы предельных теорем теории вероятностей, которые в совокупности позволяют вполне обоснованно осуществлять прогнозы в области случайных явлений, давая при этом оценку точности производимых прогнозов.

    Теорема Чебышева

Для доказательства теоремы Чебышева (да и других теорем, в том числе) воспользуемся одноимённым неравенством. Неравенство Чебышева (как впрочем и теорема) справедливо как для дискретных, так и для непрерывных случайных величин. Мы ограничимся, например, доказательством неравенства для непрерывной случайной величины.

НЕРАВЕНСТВО Чебышева 1: Вероятность того, что отклонение случайной величины Х , имеющей конечную дисперсию
, от её математического ожидания по абсолютной величине на меньше любого положительного числа, ограничена сверху величиной
, то есть, справедливо неравенство:

.

Доказательство : По определению дисперсии для непрерывной случайной величины можем записать

.

Выделим на числовой оси Ох -окрестность точки
(см. рис.). Заменим теперь интегрирование по всей оси интегралом по переменнойх на множестве . Так как под знаком интеграла стоит неотрицательная функция 2 , то результат интегрирования в результате может только уменьшиться, то есть

Интеграл в правой части полученного неравенства – это вероятность того, что случайная величина Х будет принимать значения вне интервала
. Значит

Неравенство доказано.

Замечание . Неравенство Чебышева имеет для практики ограниченное значение, поскольку часто даёт грубую, а иногда и тривиальную (не представляющую интереса) оценку. Например, если
и, следовательно,
; таким образом, в этом случае неравенство Чебышева указывает лишь на то, что вероятность отклонения находится в пределах от нуля до единицы, а это и без того очевидно, так как любая вероятность удовлетворяет этому условию.

Теоретическое же значение неравенства Чебышева весьма велико. Оценка, полученная Чебышевым, является универсальной, она справедлива для любых случайных величин, имеющих
и
.

ПРИМЕР .Найти вероятность выхода случайной величины Х , имеющей математическое ожидание
и дисперсию
, за трёхсигмовые границы.

Решение . Воспользуемся неравенством Чебышева:

Сравним полученный результат с тем, который следует из правила трёх сигм для нормального закона распределения:

Нетрудно сделать ВЫВОД : случайные величины, встречающиеся на практике, чаще всего имеют значительно меньшую вероятность выхода за трёхсигмовые границы, чем 1/9. Для них область является областью практически возможных значений случайной величины.

ТЕОРЕМА Чебышева (частный случай): Пусть Х 1 , Х 2 , …, Х n – попарно независимые случайные величины, имеющие одно и то же математическое ожидание М (Х ), и пусть дисперсии этих величин равномерно ограничены (то есть не превышают некоторого постоянного числа С ). Тогда, при достаточно большом числе независимых опытов среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к их математическому ожиданию, то есть имеет место равенство:

.

Доказательство . Применим к случайной величине
неравенство Чебышева:

.

Заметим (по условиям теоремы), что для дисперсии
справедливы соотношения:

То есть
.

Тогда, согласно неравенству Чебышева

.

Переходя к пределу при
получаем

.

А так как вероятность не может быть больше единицы, то отсюда и следует утверждение теоремы.

Теорема Чебышева была обобщена на более общий случай, доказательство которой проводится аналогично доказательству, предложенному выше.

ТЕОРЕМА Чебышева (общий случай): Пусть Х 1 , Х 2 , …, Х n – попарно независимые случайные величины, и пусть дисперсии этих величин равномерно ограничены (то есть не превышают некоторого постоянного числа С ). Тогда, при достаточно большом числе независимых опытов среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий, то есть имеет место равенство:

.

    Сущность теоремы Чебышева

Сущность доказанной теоремы такова: хотя отдельные независимые случайные величины могут принимать значения далёкие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения близкие к определённому постоянному числу, а имен к числу
(или к числу
в частном случае). Другими словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных величин, но можно предвидеть какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины . Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

    Значение теоремы Чебышева для практики

Приведём примеры применения теоремы Чебышева к решению практических задач.

Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифметическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос даёт теорема Чебышева (частный случай).

Действительно, рассмотрим результаты каждого измерения как случайные величины Х 1 , Х 2 , …, Х n . К этим величинам может быть применена теорема Чебышева, если: 1) они попарно независимы, 2) имеют одно и то же математическое ожидание, 3) дисперсии их равномерно ограничены.

Первое требование выполняется, если результат каждого измерения не зависит от результатов остальных измерений.

Второе требование выполняется, если измерения произведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру
.

Третье требование выполняется, если прибор обеспечивает определённую точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их ограничено.

Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева (частный случай): при достаточно большом - числе измерений вероятность неравенства

как угодно близка к единице. Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое сколь угодно мало отличается от истинного значения измеряемой величины.

Итак, теорема Чебышева указывает условия, при которых описанный способ измерения может быть применим 1 .

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят обо всей совокупности (генеральной совокупности) исследуемых объектов. Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемых сотнями.

В качестве другого примера можно указать на определение качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зёрен малó сравнительно со всей массой зерна, но само по себе оно достаточно великó.

Уже из приведённых примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

1 Есть и другая формулировка: Вероятность того, что отклонение случайной величины Х от её математического ожидания по абсолютной величине меньше положительного числа , не меньше чем
, то есть справедливо неравенство
.

2 Напомним, что
R

1 Однако ошибочно думать, что увеличивая число измерений можно достичь сколь угодно большой точности. Дело в том, что сам прибор даёт показания лишь с точностью
; поэтому каждый из результатов измерений, а следовательно и их среднее арифметическое, будут получены лишь с точностью, не превышающей точности прибора.

Дисперсия случайной величины. Математическое ожидание показывает, вокруг какой точки группируются значения случайной величины. Необходимо также уметь измерить изменчивость случайной величины относительно математического ожидания. Выше показано, что достигает минимума по при . Поэтому за показатель изменчивости случайной величины естественно взять именно .

Определение 5 . Дисперсией случайной величины называется число .

Установим ряд свойств дисперсии случайной величины, постоянно используемых в вероятностно-статистических методах принятия решений .

Утверждение 8 . Пусть - случайная величина , и - некоторые числа, . Тогда .

Как следует из утверждений 3 и 5, . Следовательно, . Поскольку постоянный множитель можно выносить за знак суммы, то .

Утверждение 8 показывает, в частности, как меняется дисперсия результата наблюдений при изменении начала отсчета и единицы измерения. Оно дает правило преобразования расчетных формул при переходе к другим значениям параметров сдвига и масштаба.

Утверждение 9 . Если случайные величины и независимы, то дисперсия их суммы равна сумме дисперсий: .

Для доказательства воспользуемся тождеством

которое вытекает из известной формулы элементарной алгебры при подстановке и . Из утверждений 3 и 5 и определения дисперсии следует, что

Согласно утверждению 6 из независимости и вытекает независимость и . Из утверждения 7 следует, что

Поскольку (см. утверждение 3), то правая часть последнего равенства равна 0, откуда с учетом двух предыдущих равенств и следует заключение утверждения 9.

Утверждение 10 . Пусть - попарно независимые случайные величины (т.е. и независимы, если ). Пусть - их сумма, . Тогда математическое ожидание суммы равно сумме математических ожиданий слагаемых - . Дисперсия суммы равна сумме дисперсий слагаемых, .

Соотношения, сформулированные в утверждении 10, являются основными при изучении выборочных характеристик, поскольку результаты наблюдений или измерений, включенные в выборку, обычно рассматриваются в математической статистике, теории принятия решений и эконометрике как реализации независимых случайных величин.

Для любого набора числовых случайных величин (не только независимых) математическое ожидание их суммы равно сумме их математических ожиданий. Это утверждение является обобщением утверждения 5. Строгое доказательство легко проводится методом математической индукции .

При выводе формулы для дисперсии воспользуемся следующим свойством символа суммирования:

Положим , получим

Воспользуемся теперь тем, что математическое ожидание суммы равно сумме математических ожиданий:

(8)

Как показано при доказательстве утверждения 9, из попарной независимости рассматриваемых случайных величин следует, что при . Следовательно, в сумме (8) остаются только члены с , а они равны как раз .

Полученные в утверждениях 8-10 фундаментальные свойства таких характеристик случайных величин, как математическое ожидание и дисперсия , постоянно используются практически во всех вероятностно-статистических моделях реальных явлений и процессов.

Пример 9 . Рассмотрим событие и случайную величину такую, что , если , и в противном случае, т.е. если . Покажем, что .

Воспользуемся формулой (5) для математического ожидания. Случайная величина принимает два значения - 0 и 1, значение 1 с вероятностью и значение 0 с вероятностью , а потому . Аналогично с вероятностью и с вероятностью , а потому . Вынося общий множитель , получаем, что .

Пример 10 . Рассмотрим независимых испытаний, в каждом из которых некоторое событие может наступить, а может и не наступить. Введем случайные величины следующим образом: , если в -ом испытании событие наступило, и - в противном случае. Тогда случайные величины попарно независимы (см. пример 7). Как показано в примере 9, , где . Иногда называют "вероятностью успеха" - в случае, если наступление события рассматривается как "успех".

Случайная величина называется биномиальной. Ясно, что при всех возможных исходах опытов. Чтобы найти распределение , т.е. вероятности при , достаточно знать - вероятность наступления рассматриваемого события в каждом из опытов. Действительно, случайное событие осуществляется тогда и только тогда, когда событие наступает ровно при испытаниях. Если известны номера всех этих испытаний (т.е. номера в последовательности испытаний), то вероятность одновременного осуществления в опытах события и в опытах противоположного ему - это вероятность произведения независимых событий. Вероятность произведения равна произведению вероятностей, т.е. . Сколькими способами можно задать номера испытаний из ? Это - число сочетаний из элементов по , рассматриваемое в комбинаторике . Как известно,

где символом ! обозначено произведение всех натуральных чисел от 1 до , т.е. (дополнительно принимают, что 0! = 1). Из сказанного следует, что биномиальное распределение , т.е. распределение биномиальной случайной величины, имеет вид

Название " биномиальное распределение " основано на том, что является членом с номером в разложении по биному Ньютона

если положить . Тогда при получим

Для числа сочетаний из элементов по , кроме , используют обозначение .

Из утверждения 10 и расчетов примера 9 следует, что для случайной величины , имеющей биномиальное распределение , математическое ожидание и дисперсия выражаются формулами

поскольку является суммой независимых случайных величин с одинаковыми математическими ожиданиями и дисперсиями, найденными в примере 9.

Неравенства Чебышева . Выше обсуждалась задача проверки того, что доля дефектной продукции в партии равна определенному числу. Для демонстрации вероятностно-статистического подхода к проверке подобных утверждений являются полезными неравенства, впервые примененные в теории вероятностей великим русским математиком Пафнутием Львовичем Чебышевым (1821–1894) и потому носящие его имя. Эти неравенства широко используются в теории математической статистики, а также непосредственно применяются в ряде практических задач принятия решений . Например, в задачах статистического анализа технологических процессов и качества продукции в случаях, когда явный вид функции распределения результатов наблюдений неизвестен (см. ниже, где, в частности, они применяются в задаче исключения резко отклоняющихся результатов наблюдений).

Первое неравенство Чебышева . Пусть - неотрицательная случайная величина (т.е. для любого ). Тогда для любого положительного числа справедливо неравенство

Доказательство . Все слагаемые в правой части формулы (4), определяющей математическое ожидание, в рассматриваемом случае неотрицательны. Поэтому при отбрасывании некоторых слагаемых сумма не увеличивается. Оставим в сумме только те члены, для которых . Получим, что

Из (9) и (10) следует требуемое.

Второе неравенство Чебышева . Пусть – случайная величина . Для любого положительного числа справедливо неравенство

Это неравенство содержалось в работе П.Л.Чебышева "О средних величинах", доложенной Российской академии наук 17 декабря 1866 г. и опубликованной в следующем году.

Для доказательства второго неравенства Чебышева рассмотрим случайную величину . Она неотрицательна, и потому для любого положительного числа , как следует из первого неравенства Чебышева , справедливо неравенство

Положим . Событие совпадает с событием , а потому

что и требовалось доказать.

Пример 11 . Можно указать неотрицательную случайную величину и положительное число такие, что первое неравенство Чебышева обращается в равенство .

Достаточно рассмотреть . Тогда и , т.е. .

Следовательно, первое неравенство Чебышева в его общей формулировке не может быть усилено. Однако для подавляющего большинства случайных величин, используемых при вероятностно-статистическом моделировании процессов принятия решений , левые части неравенств Чебышева много меньше соответствующих правых частей.

Пример 12 . Может ли первое неравенство Чебышева обращаться в равенство при всех ? Оказывается, нет. Покажем, что для любой неотрицательной случайной величины с ненулевым математическим ожиданием можно найти такое положительное число , что первое неравенство Чебышева является строгим.

Действительно, математическое ожидание неотрицательной случайной величины либо положительно, либо равно 0. В первом случае возьмем положительное , меньшее положительного числа , например, положим . Тогда больше 1, в то время как вероятность события не может превышать 1, а потому первое неравенство Чебышева является для этого строгим. Второй случай исключается условиями примера 11.

Отметим, что во втором случае равенство 0 математического ожидания влечет тождественное равенство 0 случайной величины. А для такой случайной величины при любом положительном и левая и правая части первого неравенства Чебышева равны 0.

Можно ли в формулировке первого неравенства Чебышева отбросить требование неотрицательности случайной величины ? А требование положительности ? Легко видеть, что ни одно из двух требований не может быть отброшено, поскольку иначе правая часть первого неравенства Чебышева может стать отрицательной.

Закон больших чисел . Неравенство Чебышева позволяет доказать замечательный результат, лежащий в основе математической статистики – закон больших чисел . Из него вытекает, что выборочные характеристики при возрастании числа опытов приближаются к теоретическим, а это дает возможность оценивать параметры вероятностных моделей по опытным данным. Без закона больших чисел не было бы большей части прикладной математической статистики.

Теорема Чебышева . Пусть случайные величины попарно независимы и существует число такое, что при всех . Тогда для любого положительного выполнено неравенство

(11)

Доказательство . Рассмотрим случайные величины и . Тогда согласно утверждению 10

Из свойств математического ожидания следует, что , а из свойств дисперсии – . Таким образом,

Из условия теоремы Чебышева следует, что

Применим к второе неравенство Чебышева. Получим для стоящей в левой части неравенства (11) вероятности оценку

что и требовалось доказать.

Эта теорема была получена П.Л.Чебышевым в той же работе 1867 г. "О средних величинах", что и неравенства Чебышева .

Пример 13 . Пусть . При каких правая часть неравенства (11) не превосходит 0,1? 0,05? 0,00001?

В рассматриваемом случае правая часть неравенства (11) равна . Она не превосходит 0,1, если не меньше 1000, не превосходит 0,05, если не меньше 2000, не превосходит 0,00001, если не меньше 10 000 000.

Правая часть неравенства (11), а вместе с ней и левая, при возрастании и фиксированных и убывает, приближаясь к 0. Следовательно, вероятность того, что среднее арифметическое независимых случайных величин отличается от своего математического ожидания менее чем на , приближается к 1 при возрастании числа случайных величин, причем при любом . Это утверждение называют ЗАКОНОМ БОЛЬШИХ ЧИСЕЛ.

Наиболее важен для вероятностно-статистических методов принятия решений (и для математической статистики в целом) случай, когда все ., имеют одно и то же математическое ожидание и одну и ту же дисперсию . В качестве замены (оценки) неизвестного исследователю математического ожидания используют выборочное среднее арифметическое

Из закона больших чисел следует, что при увеличении числа опытов (испытаний, измерений) сколь угодно близко приближается к , что записывают так:

Здесь знак означает " сходимость по вероятности". Обратим внимание, что понятие " сходимость по вероятности" отличается от понятия "переход к пределу" в математическом анализе. Напомним, что последовательность имеет предел при , если для любого сколь угодно малого существует число такое, что при любом справедливо утверждение: . При использовании понятия " сходимость по вероятности" элементы последовательности предполагаются случайными, вводится еще одно сколь угодно малое число и утверждение предполагается выполненным не наверняка, а с вероятностью не менее .

В начале лекции отмечалось, что с точки зрения ряда естествоиспытателей вероятность события – это число, к которому приближается отношение количества осуществлений события к количеству всех опытов при безграничном увеличении числа опытов. Известный математик Якоб Бернулли (1654–1705), живший в городе Базель в Швейцарии, в самом конце XVII века доказал это утверждение в рамках математической модели (опубликовано доказательство было лишь после его смерти в 1713 году). Современная формулировка теоремы Бернулли такова.

Теорема Бернулли . Пусть – число наступлений события в независимых (попарно) испытаниях и есть вероятность наступления события в каждом из испытаний. Тогда при любом справедливо неравенство

(12)

Доказательство . Как показано в примере 10, случайная величина имеет биномиальное распределение с вероятностью успеха и является суммой независимых случайных величин , каждое из которых равно 1 с вероятностью и 0 с вероятностью , т.е. . Применим к теорему Чебышева с и получим требуемое неравенство (12).

Теорема Бернулли дает возможность связать математическое определение вероятности ( по А.Н. Колмогорову) с определением ряда естествоиспытателей ( по Р. Мизесу (1883–1953), согласно которому вероятность есть предел частоты в бесконечной последовательности испытаний). Продемонстрируем эту связь . Для этого сначала отметим, что

при всех . Действительно,

Следовательно, в теореме Чебышева можно использовать . Тогда при любом и фиксированном правая часть неравенства (12) при возрастании приближается к 0, что и доказывает согласие математического определения в рамках вероятностной модели с мнением естествоиспытателей.

Есть и прямые экспериментальные подтверждения того, что частота осуществления определенных событий близка к вероятности, определенной из теоретических соображений. Рассмотрим бросания монеты. Поскольку и герб, и решетка имеют одинаковые шансы оказаться сверху, то вероятность выпадения герба равна 1/2 из соображений равновозможности. Французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз, герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона равна 0,507. Английский статистик К. Пирсон бросил монету 12000 раз и при этом наблюдал 6019 выпадений герба – частота 0,5016. В другой раз он бросил монету 24000 раз, герб выпал 12012 раз – частота 0,5005. Как видим, во всех этих случаях частоты лишь незначительно отличаются от теоретической вероятности 0,5 [ [ 2.3 ] , с.148].

О проверке статистических гипотез. С помощью неравенства (12) можно кое-что сказать по поводу проверки соответствия качества продукции заданным требованиям.

Пусть из 100000 единиц продукции 30000 оказались дефектными. Согласуется ли это с гипотезой о том, что вероятность дефектности равна 0,23? Прежде всего, какую вероятностную модель целесообразно использовать? Принимаем, что проводится сложный опыт , состоящий из 100000 испытаний 100000 единиц продукции на годность. Считаем, что испытания (попарно) независимы и что в каждом испытании вероятность того, что единица продукции является дефектной, равна . В реальном опыте получено, что событие " единица продукции не является годной" осуществилось 30000 раз при 100000 испытаниях. Согласуется ли это с гипотезой о том, что вероятность дефектности =0,23?

Для проверки гипотезы воспользуемся неравенством (12). В рассматриваемом случае . Для проверки гипотезы поступим так. Оценим вероятность того, что отличается от так же, как в рассматриваемом случае, или больше, т.е. оценим вероятность выполнения неравенства . Положим в неравенстве (12) . Тогда

(13)

При = 100000 правая часть (13) меньше 1/2500. Значит, вероятность того, что отклонение будет не меньше наблюдаемого, весьма мала. Следовательно, если исходная гипотеза верна, то в рассматриваемом опыте осуществилось событие, вероятность которого меньше 1/2500. Поскольку 1/2500 – очень маленькое число, то исходную гипотезу надо отвергнуть.

Подробнее методы проверки статистических гипотез будут рассмотрены ниже. Здесь отметим, что одна из основных характеристик метода проверки гипотезы – уровень значимости, т.е. вероятность отвергнуть проверяемую гипотезу (ее в математической статистике называют нулевой и обозначают ), когда она верна. Для проверки статистической гипотезы часто поступают так. Выбирают уровень значимости – малое число . Если описанная в предыдущем абзаце

Более точные расчеты, основанные на применении центральной предельной теоремы теории вероятностей (см. ниже), дают = 0,095, = 0,0000005, так что оценка (13) является в рассматриваемом случае весьма завышенной. Причина в том, что получена она из наиболее общих соображений, применительно ко всем возможным случайным величинам улучшить ее нельзя (см. пример 11 выше), но применительно к биномиальному распределению – можно.

Ясно, что без введения уровня значимости не обойтись, ибо даже очень большие отклонения от имеют положительную вероятность осуществления. Так, при справедливости гипотезы событие "все 100000 единиц продукции являются дефектными" отнюдь не является невозможным с математической точки зрения, оно имеет положительную

При = 10000 правая часть последнего неравенства равна 1/400. Значит, если исходная гипотеза верна, то в нашем единственном эксперименте осуществилось событие, вероятность которого весьма мала – меньше 1/400. Поэтому исходную гипотезу необходимо отвергнуть.

Если из 1000 бросаний монеты гербы выпали в 400 случаях, то правая часть выписанного выше неравенства равна 1/40. Гипотеза симметричности отклоняется на уровне значимости 0,05 (и 0,1), но рассматриваемые методы не дают возможности отвергнуть ее на уровне значимости 0,01.

Если = 100, а = 40, то правая часть неравенства равна 1/4. Оснований для отклонения гипотезы нет. С помощью более тонких методов, основанных на центральной предельной теореме теории вероятностей, можно показать, что левая часть неравенства равна приблизительно 0,05. Это показывает, как важно правильно выбрать метод проверки гипотезы или оценивания параметров. Следовательно, целесообразна стандартизация подобных методов, позволяющая сэкономить усилия, необходимые для сравнения и выбора наилучшего метода, а также избежать устаревших, неверных или неэффективных методов.

Ясно, что даже по нескольким сотням опытов нельзя достоверно отличить абсолютно симметричную монету ( = 1/2) от несколько несимметричной (для которой, скажем, = 0,49). Более того, любая реальная монета несколько несимметрична, так что монета с = 1/2 - математическая абстракция . Между тем в ряде управленческих и производственных ситуаций необходимо осуществить справедливую жеребьевку, а для этого требуется абсолютно симметричная монета. Например, речь может идти об очередности рассмотрения инвестиционных проектов комиссией экспертов, о порядке вызова для собеседования кандидатов на должность, об отборе единиц продукции из партии в выборку для контроля и т.п.

И правая часть неравенства (12) имеет вид

Итак, здесь на основе элементарной теории вероятностей (с конечным пространством элементарных событий ) мы сумели построить вероятностные модели для описания проверки качества деталей (единиц продукции) и бросания монет и предложить методы проверки гипотез, относящихся к этим явлениям. В математической статистике есть более тонкие и сложные методы проверки описанных выше гипотез, которыми и пользуются в практических расчетах.

Можно спросить: "В рассмотренных выше моделях вероятности были известны заранее – со слов Струкова или же из-за того, что мы предположили симметричность монеты. А как строить модели, если вероятности неизвестны? Как оценить неизвестные вероятности?" Теорема Бернулли – результат, с помощью которого дается ответ на этот вопрос. Именно, оценкой неизвестной вероятности является число , поскольку доказано, что при возрастании вероятность того, что отличается от более чем на какое-либо фиксированное число, приближается к 0. Оценка будет тем точнее, чем больше . Более того, можно доказать, что с некоторой точки зрения (см. далее) оценка для вероятности является наилучшей из возможных (в терминах математической статистики – состоятельной, несмещенной и эффективной).

Неравенство Чебышева

Наименование параметра Значение
Тема статьи: Неравенство Чебышева
Рубрика (тематическая категория) Математика

Теорема. Пусть (W,F,P) - неĸᴏᴛᴏᴩᴏᴇ вероятностное пространство и X - неотрицательная случайная величина, тогда для всякого e > 0 справедливо неравенство

(1)

Доказательство. Пусть случайная величина X представляется в виде

X = X ×I(X ³ e) + X × I(X < e) ³ XI (X ³ e) ³ eI (X³e),

где I(А) - индикатор события.

По этой причине, используя свойства математических ожиданий,

, отсюда

- это первое неравенство Чебышева.

Следствия. В случае если X - произвольная случайная величина, то для e>0

(2)

(3)

(3) - второе неравенство Чебышева в нецентрированной форме.

(4)

(4) - второе неравенство Чебышева в центрированной форме.

Пример. Дана случайная величина X с математическим ожиданием m x и дисперсией s x 2 =D x . Оценить вероятность того, что X отклонится от своего математического ожидания не меньше чем на 3s x .

Решение . Полагая в неравенстве Чебышева (формула (4)) e=3s x имеем:

ᴛ.ᴇ. вероятность того, что отклонение случайной величины от ее математического ожидания выйдет за пределы трех средних квадратических отклонений не должна быть больше 1/9. Это оценка сверху - верхняя граница вероятностного отклонения. Стоит сказать, что для нормальной случайной величины вероятностное отклонение =0,003.

Примечание. На практике имеем дело со случайными величинами, значения которых редко выходят за пределы m x ±3s x (“правило трех сигм").

Неравенство Чебышева - понятие и виды. Классификация и особенности категории "Неравенство Чебышева" 2017, 2018.

  • - Теорема 1. Неравенство Чебышева.

    Закон больших чисел. В широком смысле слова закон больших чисел означает, что при большом числе случайных экспериментов средний их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности (т.е. событие имеет... .


  • - Неравенство Чебышева.

  • - Неравенство Чебышева.

    Случайный характер величины проявляется в том, что нельзя предвидеть, какое именно из своих значений она примет в итоге испытания. Это зависит от многих случайных причин, учесть которые мы не в состоянии. Поскольку о каждой случайной величине мы располагаем весьма... .


  • - Неравенство Чебышева

    ТЕОРЕМЕ БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНОЙ ПРЕДЕЛЬНОЙ НЕРАВЕНСТВО ЧЕБЫШЕВА, ПОНЯТИЕ О ЗАКОНЕ Если случайная величина Х с математическим ожиданием М(Х) = А может принимать только неотрицательные значения, то при любом e >0 справедливо... .


  • - ЛЕКЦИЯ 17. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ

    Если известна дисперсия случайной величины, то с ее помощью можно определить отклонение этой случайной величины на определенное значение от математического ожидания, причем оценка вероятности отклонения будет зависеть от дисперсии, а не от закона распределения....

  • ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

    Неравенство Чебышева и его значение. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема теории вероятностей (теорема Ляпунова) и ее использование в математической статистике.

    Теория вероятностей изучает закономерности, свойственные массовым случайным явлениям. Предельные теоремы теории вероятностей устанавливают зависимость между случайностью и необходимостью. Изучение закономерностей, проявляющихся в массовых случайных явлениях, позволяет научно предсказывать результаты будущих испытаний.

    Предельные теоремы теории вероятностей делятся на две группы, одна из которых получила название закона больших чисел , а другая - .

    В настоящей главе рассматриваются следующие теоремы, относящиеся к закону больших чисел: неравенство Чебышева, теоремы Чебышева и Бернулли.

    Закон больших чисел состоит из нескольких теорем, в которых доказывается приближение средних характеристик при соблюдении определенных условий к некоторым постоянным значениям.

    1. Неравенство Чебышева .

    Если случайная величина имеет конечное математическое ожидание и дисперсию, то для любого положительного числасправедливо неравенство

    , (9.1)

    т. е. вероятность того, что отклонение случайной величины от своего математического ожидания по абсолютной величине не превзойдет, больше разности между единицей и отношением дисперсии этой случайной величины к квадрату.

    Запишем теперь вероятность события , т. е. события, противоположного событию. Очевидно, что

    . (9.2)

    Неравенство Чебышева справедливо для любого закона распределения случайной величины и применимо как к положительным, так и к отрицательным случайным величинам. Неравенство (9.2) ограничивает сверху вероятность того, что случайная величина отклонится от своего математического ожидания на величину, большую чем. Из этого неравенства следует, что при уменьшении дисперсии верхняя граница вероятности тоже уменьшается и значение случайной величины с небольшой дисперсией сосредоточиваются около ее математического ожидания.

    Пример 1 . Для правильной организации сборки узла необходимо оценить вероятность, с которой размеры деталей отклоняются от середины поля допуска не более чем на . Известно, что середина поля допуска совпадает с математическим ожиданием размеров обрабатываемых деталей, а среднее квадратическое отклонение равно.

    Решение. По условию задачи имеем: ,. В нашем случае- размер обрабатываемых деталей. Используя неравенство Чебышева, получим

    2. Теорема Чебышева .

    При достаточно большом числе независимых испытаний можно с вероятностью, близкой к единице, утверждать, что разность между средним арифметическим наблюдавшихся значений случайной величиныи математическим ожиданием этой величиныпо абсолютной величине окажется меньше сколь угодно малого числапри условии, что случайная величинаимеет конечную дисперсию, т. е.

    где - положительное число, близкое к нулю.

    Переходя в фигурных скобках к противоположному событию, получим

    .

    Теорема Чебышева позволяет с достаточной точностью по средней арифметической судить о математическом ожидании или наоборот: по математическому ожиданию предсказывать ожидаемую величину средней. Так, на основании этой теоремы можно утверждать, что если произведено достаточно большое количество измерений определенного параметра прибором, свободным от систематической погрешности, то средняя арифметическая результатов этих измерений сколь угодно мало отличается от истинного значения измеряемого параметра.

    Пример 2. Для определения потребности в жидком металле и сырье выборочным путем устанавливают средний вес отливки гильзы к автомобильному двигателю, т. к. вес отливки, рассчитанный по металлической модели, отличается от фактического веса. Сколько нужно взять отливок, чтобы с вероятностью, большей , можно было утверждать, что средний вес отобранных отливок отличается от расчетного, принятого за математическое ожидание веса, не более чем накг ? Установлено, что среднее квадратическое отклонение веса равно кг .

    Решение. По условию задачи имеем ,,, где- средний вес отливок гильзы. Если применить к случайной величиненеравенстсво Чебышева, то получим

    ,

    а с учетом равенств (4.4) и (4.5) -

    .

    Подставляя сюда данные задачи, получим

    ,

    откуда находим .

    3. Теорема Бернулли .

    Теорема Бернулли устанавливает связь между частостью появления события и его вероятностью.

    При достаточно большом числе независмых испытаний можно с вероятностью, близкой к единице, утверждать, что разность между частостью появления событияв этих испытаниях и его вероятностью в отдельном испытании по абсолютной величине окажется меньше сколь угодно малого числа, если вероятность наступления этого события в каждом испытании постоянна и равна .

    Утверждение теоремы можно записать в виде следующего неравенства:

    , (9.3)

    где и- любые сколь угодно малые положительные числа.

    Используя свойство математического ожидания и дисперсии, а также неравенсво Чебышева, формулу (9.3) можно записать в виде

    , (9.4)

    При решении практических задач иногда бывает необходимо оценить вероятность наибольшего отклонения частоты появлений события от ее ожидаемого значения. Случайной величиной в этом случае является число появлений события внезависимых испытаниях. Имеем:

    ,

    .

    Используя неравенство Чебышева, в этом случае получим

    .

    Пример 3. Из изделий, отправляемых в сборочный цех, было подвергнуто обследованию, отобранных случайным образом изделий. Среди них оказалосьбракованных. Приняв долю бракованных изделий среди отобранных за вероятность изготовления бракованного изделия, оценить вероятность того, что во всей партии бракованных изделий окажется не более% и не менее%.

    Решение. Определим вроятность изготовления бракованного изделия:

    .

    Наибольшее отклонение частости появлений бракованных изделий от вероятности по абсолютной величине равно; число испытаний. Используя формулу (9.4), находим искомую вероятность:

    ,

    .

    4. Теорема Ляпунова.

    Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определенным предельным значениям независимо от их закона распределения. В теории вероятностей существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Эта группа теорем носит общее название центральной предельной теоремы . Различные формы центральной предельной теоремы отличаются между собой условиями, накладываемыми на сумму составляющих случайных величин.

    Закон распределения суммы независимых случайных величин () приближается к нормальному закону распределения при неограниченном увеличении, если выполняются следующие условия:

    1) все величины имеют конечные математические ожидания и дисперсии:

    ; ;,

    где ,;

    2) ни одна из величин по своему значению резко не отличается от всех остальных:

    .

    При решении многих практических задач используют следующую формулировку теоремы Ляпунова для средней арифметической наблюдавшихся значений случайной величины , которая также является случайной величиной (при этом соблюдаются условия, перечисленные выше):

    если случайная величина имеет конечные математическое ожиданиеи дисперсию, то распределение средней арифметической, вычисленной по наблюдавшимся значениям случайной величины внезависимых испытаниях, приприближается к нормальному закону с математическим ожиданиеми дисперсией, т. е .

    .

    Поэтому вероятность того, что заключено в интервалеможно вычислить по формуле

    (9.5)

    Используя функцию Лапласа (см. приложение 2), формулу (9.5) можно записать в следующем, удобном для расчетов виде:

    ; .

    Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы может быть заменен нормальным.

    Частным случаем предельной центральной теоремы является теорема Лапласа (см. глава 3, п. 5). В ней рассматривается случай, когда случайные величины ,, дискретны, одинаково распределены и принимают только два возможных значения:и. О применении этой теоремы в математической статистике см. п. 6 главы 3.

    ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

    1. Что называют законом больших чисел? Какой смысл имеет это название?

    2. Сформулируйте неравенство Чебышева и теорему Чебышева.

    3. Какова роль предельных теорем в теории вероятностей?

    4. Какой из законов распределения фигурирует в качестве предельного закона?

    5. В чем состоит центральная предельная теорема Ляпунова?

    6. Как можно истолковать теорему Лапласа в качестве предельной теоремы теории вероятностей?

    ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

    1. Длина изготовляемых изделий представляет случайную величину, среднее значение которой (математическое ожидание) равно см . Дисперсия этой величины равна . Используя нераввенство Чебышева, оценить вероятность того, что: а) отклонение длины изготовленного изделия от ее среднего значения по абсолютной величине не превзойдет; б) длина изделия выразится числом, заключенным междуисм .

    Ответ: а) ; б).

    2. Устройство состоит из независимо работающих элементов. Вероятность отказа каждого элемента за времяравна. Используя неравенство Чебышева, оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за времяокажется меньше.

    Закон больших чисел

    Ранее было отмечено, что нельзя предвидеть, какое из возможных значений примет случайная величина, так как мы не можем учесть все обстоятельства, от которых зависит это событие. Однако в некоторых случаях можно указать вероятность такого события.

    Опыт подсказывает нам, что события, вероятность наступления которых мала, редко происходят, а события, имеющие вероятность, близкую к единице, почти обязательно происходят. Принцип, заключающийся в том, что маловероятные события на практике рассматриваются как невозможные, носит название “принципа практической невозможности маловероятных событий”. События, происходящие с вероятностями, весьма близкими к единице, считаются практически достоверными (принцип практической достоверности). Сколь мала или сколь велика должна быть вероятность события, зависит от практического применения, от важности этого события.

    Следовательно, одной из основных задач теории вероятностей является установление закономерностей, происходящих с вероятностями близкими к единице. Эти закономерности должны учитывать совместное влияние большого числа независимо (или слабо зависимо) действующих факторов. При этом каждый фактор в отдельности характеризуется незначительным воздействием. Всякое предложение, устанавливающее отмеченные выше закономерности, называется законом больших чисел. Законом больших чисел, по определению проф. А.Я. Хиничина, следует назвать общий принцип, в силу которого совокупное действие большого числа факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая.

    Некоторые конкретные условия, при которых выполняется закон больших чисел, указаны в теоремах Чебышева, Бернули, Пуассона и Ляпунова.

    Лемма Маркова. Неравенство и теорема Чебышева. Теоремы Бернулли и Пуассона

    Лемма Маркова. Пусть Х - случайная величина, принимающая лишь неотрицательные значения. Тогда можно получить следующее неравенство:

    (τ > 0 любое). (4.1)

    Доказательство . Для определенности предположим, что Х - непрерывная случайная величина с плотностью f(х). По определению математического ожидания получаем

    .

    .

    Оба слагаемых в правой части не отрицательны, в силу условий леммы, поэтому

    ,

    но теперь x ≥ τ, и следовательно,

    Таким образом,

    Так как τ > 0, получим

    Рассмотрим теперь случайную величину Х, имеющую математическое ожидание М(Х) и дисперсию D(X). Оценим вероятность события, заключающегося в том, что отклонение Х - М(Х) не превысит по абсолютной величине положительного числа ε. Оценка указанной вероятности получается с помощью неравенства Чебышева.

    Неравенство Чебышева

    Неравенство Чебышева . Вероятность того, что отклонение случайной величины Х от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем , то есть

    . (4.2)

    Доказательство . Приведем доказательство для дискретной (конечной) случайной величины Х:

    x k +1

    p k +1

    p n

    Рассмотрим случайную величину . Тогда ее ряд распределения имеет вид

    │Х – M (X )│

    │х 1 – M (X )│

    │х 2 – M (X )│

    │x k – M (X )│

    │x k +1 – M (X )│

    │x n – M (X )│

    p k +1

    p n

    Не ограничивая общность рассуждения, можно предположить, что первые к значений случайной величины меньше заданного ε, а остальные значения не меньше ε. Тогда на основании теоремы сложения вероятностей получим следующую формулу:

    . (4.3)

    Чтобы найти , запишем формулу D(X) в виде

    Опуская в правой части этого равенства первую сумму и заменяя во второй сумме меньшей величиной ε, получим неравенство

    Из этого неравенства следует:

    . (4.4)

    Подставляя правую часть (4.4) в (4.3), окончательно получим

    что и требовалось доказать.

    Рассмотрим достаточно большое число n независимых случайных величин Х1, Х2, … Хn. Если дисперсии их ограничены числом C, то событие, заключающееся в том, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым, является почти достоверным. Это предложение, относящиеся к закону больших чисел, доказал П.Л. Чебышев.

    Теорема Чебышева . Если Х1, Х2, … Хn попарно независимые случайные величины, причем дисперсии их не превышают постоянного числа С, то как бы мало ни было положительное число ε, вероятность неравенства

    будет как угодно близка к единице, если число n случайных величин достаточно велико.

    Используя понятие предела, можно в условиях теоремы записать:

    .

    Вместо последней записи часто кратко говорят, что суммы сходятся по вероятности к нулю, которое записываются так, указывая над стрелкой р

    .

    Доказательство . Рассмотрим случайную величину , которая, по сути, является средней арифметической этих величин. Случайная величина Х есть линейная функция независимых случайных величин Х1, Х2, … Хn. На основании свойств математического ожидания и дисперсии можно записать:

    По условию теоремы D(Xi) ≤ С, поэтому

    .

    Теперь можно воспользоваться неравенством Чебышева:

    Переходя к пределу при , будем иметь:

    .

    Так как вероятность не может быть больше единицы, этот предел равен единице, что и требовалось доказать.

    Из теоремы Чебышева следует утверждение, заключающиеся в том, что среднее арифметическое достаточно большого числа независимых случайных величин, имеющих ограниченные дисперсии, утрачивает случайный характер и становится детерминированной величиной.

    Пример 4.1. Дисперсия каждой из 6250 независимых случайных величин не превосходит 9. Оценить вероятность того, что абсолютная величина отклонения средней арифметической этих случайных величин от средней арифметической их математических ожиданий не превысит 0,6.

    Решение . Согласно теореме Чебышева искомая вероятность Р не меньше . По условиям задачи C = 9, n = 6250, ε = 0,6, следовательно, в соответствии с выражением (4.5) Р ≥ 0,996.

    Отметим некоторые важные частные случаи теоремы Чебышева.

    Теорема Бернулли . Пусть производится n независимых испытаний, в каждом из которых вероятность появления события постоянна и равна р. Тогда каково бы ни было ε > 0,

    , (4.6)

    где m/n - частость (относитетельная частота) появления события А.

    Доказательство . Для доказательства рассмотрим случайную величину Хi = mi, являющуюся числом наступления события А в I испытании, так что m = m1 + m2 +…+ mi +…+ mn, и случайные величины mi попарно независимы. Ранее было показано, что М(mi) = p и D(mi) = pq. Так как pq ≤ 1/4, то дисперсии случайных величин mi ограничены одним и тем же числом С = 1/4, следовательно, получаем все условия, при которых справедлива теорема Чебышева и окончательно получим

    , (4.7)

    Пример 4.2. На предприятии, выпускающем кинескопы, 0,8 всей продукции выдерживает гарантийный срок службы. С вероятностью, превышающей 0,95, найти пределы, в которых находится доля кинескопов, выдерживающих гарантийный срок, из партии 8000 кинескопов.

    Решение . Применяем теорему Бернулли при n = 8000, Р ≥ 0,95, р = 0,8 и q = 0,2. Подставляя данные p, q и n в формулу (4.7)

    найдем ε=0,02. Раскрывая модуль в соотношении (4.6), из неравенства получим

    или 6240 < m < 6560.

    Теорема Пуассона. Если в последовательности независимых испытаний появление события А в k-ом испытании равна рk, то

    (4.8)

    где m есть случайная величина, равная числу появлений события А в первых n испытаниях.

    Доказательство . Пусть случайная величина Хк = mk означает число появления события А в k-м испытании. Тогда , и случайные величины mk попарно независимы. Таким образом, теорема Пуассона является частным случаем теоремы Чебышева. На основании свойств математического ожидания и дисперсии случайной величины получим следующие формулы:

    ,

    где черта над вероятностями означает их средние значения.

    Подставляя эти формулы в неравенство Чебышева (4.5), получаем неравенство, выражающее теорему Пуассона:

    , (4.9)

    и переходя к пределу, при n, стремящимся к бесконечности, окончательно получим

    Пример 4.3. Произведено 900 независимых испытаний, причем в 450 из этих испытаний вероятность появления события А равна 2/3, в 200 - 0,5, в 160 - 0,3 и в 90 - 0,4. Найти оценку вероятности того, что частость или относительная частота появления события А отклоняется по абсолютной величине от средней вероятности не больше, чем на 0,1.

    Решение . Применяем теорему Пуассона. Находим :

    Подставляя в правую часть неравенства (4.9)

    значения , ε и n, получим Р ≥ 0,97.

    Теорема Бернулли является частным случаем теоремы Пуассона.

    В самом деле, если вероятность появления данного события в каждом испытании постоянна: р1 = р2 = … = рn = р, то = р и = pq.

    Замечание. В тех случаях, когда вероятность появления события в каждом испытании не известна, за верхнюю границу дисперсии принимают C = 1/4, т.е.

    .

    Теорема Лапласа

    Теоремы Чебышева, Бернулли, Пуассона устанавливают нижнюю границу вероятности, что часто бывает недостаточно. В некоторых случаях важно знать достаточно точное значение вероятности. Этому требованию отвечают так называемые предельные теоремы закона больших чисел, указывающие асимптотические формулы для вероятностей неравенства относительно n случайных величин Xi.

    Мы уже знаем, что вероятность неравенства вычисляется по интегральной теорема Лапласа, а именно

    ,

    Следовательно, достаточно точным выражением теоремы Бернулли является интегральная теорема Лапласа. Асимптотическую формулу для теоремы Чебышева доказал его ученик А.М. Ляпунов. Приведем теорему Ляпунова, доказательство которой мы провели в 4-х лекции.

    Центральная предельная теорема

    Теорема Ляпунова. Рассмотрим n независимых случайных величин Х1, Х2,…,Хn, удовлетворяющих условиям:

    1) все величины имеют определенные математические ожидания и конечные дисперсии;

    2) ни одна из величин не выделяется резко от остальных по своим значениям.

    Тогда при неограниченном возрастании n распределение случайной величины приближается к нормальному закону.

    Таким образом, имеем следующую асимптотическую формулу:

    , (4.10)

    где .

    Пример 4.4. Дисперсия каждой из 400 независимых случайных величин равна 25. Найти вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от средней арифметической их математических ожиданий не превысит 0,5.

    Решение . Применим теорему Ляпунова. По условию задачи n = 400, D(Xi) = 25, следовательно, и ε = 0,5. Подставляя эти данные в формулу получим t = 2 откуда Р = Ф(2) = 0,9545.

    В заключение приведем доказательство неравенства Чебышева для непрерывных случайных величин.

    Лемма (неравенство Чебышева) . Для любого e e

    Что и требовалось доказать.