Болезни Военный билет Призыв

Взаимодействие заряженных тел, законы электродинамики. Элементарный электрический заряд

Электрическое поле

1 Электрический заряд

Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление жидкости и газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий. Столь же фундаментальным типом взаимодействия является тяготение - гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.

1.Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд).

2.Гравитационное взаимодействие - это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.

3.Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в 10 42 раз превышает силу их гравитационного притяжения друг к другу.

Каждое заряженное тело обладает некоторой величиной электрического заряда q. Электрический заряд - это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы. Единицей измерения заряда является кулон (Кл).

1.1 Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия - притяжение и отталкивание - удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.

Заряды разных знаков притягиваются друг к другу, а заряды одного знака друг от друга отталкиваются. Это проиллюстрировано на рис. 1; подвешенным на нитях шарикам со- общены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны. Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих (Единица измерения заряда определяется через единицу измерения силы тока. 1 Кл - это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в 1 А. ) тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен 1,6 · 10 −19 Кл. Заряд электрона противоположен ему по знаку и равен −1,6 · 10 −19 Кл. Величина e = 1,6 · 10 −19 Кл называется элементарным зарядом . Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела q всегда складывается из целого количества элементарных зарядов: q = ± Ne. Если q < 0, то тело имеет избыточное количество N электронов (по сравнению с количеством протонов). Если же q > 0, то, наоборот, у тела электронов недостаёт: протонов на N больше.

1.2 Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация - это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело - сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк - отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть - положительно.

Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову.

Другой тип электризации называется электростатической индукцией , или электризацией через влияние . В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других - отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2. На некотором расстоянии от металлического тела находится положительный заряд q. Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая - положительно. Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3.

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются некомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней - положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд - хорошо известная вам молния.

1.3 Закон сохранения заряда

Вернемся, к примеру, электризации трением - натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:

q1 + q2 + . . . + qn = const.

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки - столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется! Например, на рис. 5 показан процесс γ → e − + e +, при котором порция электромагнитного излучения γ (так называемый фотон) превращается в две заряженные частицы - электрон e − и позитрон e +. Такой процесс оказывается возможным при некоторых условиях - например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.

2 Закон Кулона

Взаимодействие неподвижных (в данной инерциальной системе отсчёта) зарядов называется электростатическим . Оно наиболее просто для изучения.

Раздел электродинамики, в котором изучается взаимодействие неподвижных зарядов, называется электростатикой. Основной закон электростатики - это закон Кулона.

По внешнему виду закон Кулона удивительно похож на закон всемирного тяготения, который устанавливает характер гравитационного взаимодействия точечных масс. Закон Кулона является законом электростатического взаимодействия точечных зарядов.

Точечный заряд - это заряженное тело, размеры которого много меньше других размеров, характерных для данной задачи. В частности, размеры точечных зарядов пренебрежимо малы по сравнению с расстояниями между ними.

Точечный заряд - такая же идеализация, как материальная точка, точечная масса и т. д. В случае точечных зарядов мы можем однозначно говорить о расстоянии между ними, не задумываясь о том, между какими именно точками заряженных тел это расстояние измеряется.

Закон Кулона. Сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению абсолютных величин зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила называется кулоновской . Вектор кулоновской силы всегда лежит на прямой, которая соединяет взаимодействующие заряды. Для кулоновской силы справедлив третий закон Ньютона: заряды действуют друг на друга с силами, равными по модулю и противоположными по направлению.

В качестве примера на рис. 6 показаны силы F1 и F2, с которыми взаимодействуют два отрицательных заряда.

Рис. 6. Кулоновская сила

Если заряды, равные по модулю q1 и q2, находятся на расстоянии r друг от друга, то они взаимодействуют с силой

Коэффициент пропорциональности k в системе СИ равен:

k = 9 · 10 9 Н · м 2 /Кл 2 .

Если сравнивать с законом всемирного тяготения, то роль точечных масс в законе Кулона играют точечные заряды, а вместо гравитационной постоянной G стоит коэффициент k. Математически формулы этих законов устроены одинаково. Важное физическое отличие заключается в том, что гравитационное взаимодействие всегда является притяжением, а взаимодействие зарядов может быть как притяжением, так и отталкиванием.

Так уж вышло, что наряду с константой k имеется ещё одна фундаментальная константа ε 0 , связанная с k соотношением

Константа ε 0 называется электрической постоянной. Она равна:

ε 0 = 1/4πk = 8,85 · 10 −12 Кл 2 /Н · м 2 .

Закон Кулона с электрической постоянной выглядит так:

Опыт показывает, что выполнен так называемый принцип суперпозиции. Он состоит из двух утверждений:

  1. Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел.
  2. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F1, F2, . . . , Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил:

F = F1 + F2 + . . . + Fn

Принцип суперпозиции проиллюстрирован на рис. 7. Здесь положительный заряд q взаимодействует с двумя зарядами: положительным зарядом q1 и отрицательным зарядом q2.

Рис. 7. Принцип суперпозиции

Принцип суперпозиции позволяет прийти к одному важному утверждению.

Вы помните, что закон всемирного тяготения справедлив на самом деле не только для точечных масс, но и для шаров со сферически-симметричным распределением массы (в частности, для шара и точечной массы); тогда r - расстояние между центрами шаров (от точечной массы до центра шара). Этот факт вытекает из математической формы закона всемирного тяготения и принципа суперпозиции.

Поскольку формула закона Кулона имеет ту же структуру, что и закон всемирного тяготения, и для кулоновской силы также выполнен принцип суперпозиции, мы можем сделать аналогичный вывод: по закону Кулона будут взаимодействовать два заряженных шара (точечный заряд с шаром) при условии, что шары имеют сферически-симметричное распределение заряда; величина r в таком случае будет расстоянием между центрами шаров (от точечного заряда до шара).

Значимость данного факта мы увидим совсем скоро; в частности, именно поэтому напряжённость поля заряженного шара окажется вне шара такой же, как и у точечного заряда. Но в электростатике, в отличие от гравитации, с этим фактом надо быть осторожным. Например, при сближении положительно заряженных металлических шаров сферическая симметрия нарушится: положительные заряды, взаимно отталкиваясь, будут стремиться к наиболее удалённым друг от друга участкам шаров (центры положительных зарядов будут находиться дальше друг от друга, чем центры шаров). Поэтому сила отталкивания шаров в данном случае будет меньше того значения, которое получится из закона Кулона при подстановке вместо r расстояния между центрами.

2.2 Закон Кулона в диэлектрике

Отличие электростатического взаимодействия от гравитационного состоит не только в наличии сил отталкивания. Сила взаимодействия зарядов зависит от среды, в которой заряды находятся (а сила всемирного тяготения от свойств среды не зависит). Диэлектриками , или изоляторами называются вещества, которые не проводят электрический ток.

Оказывается, что диэлектрик уменьшает силу взаимодействия зарядов (по сравнению с вакуумом). Более того, на каком бы расстоянии друг от друга заряды ни находились, сила их взаимодействия в данном однородном диэлектрике всегда будет в одно и то же число раз меньше, чем на таком же расстоянии в вакууме. Это число обозначается ε и называется диэлектрической проницаемостью диэлектрика. Диэлектрическая проницаемость зависит только от вещества диэлектрика, но не от его формы или размеров. Она является безразмерной величиной и может быть найдена из таблиц. Таким образом, в диэлектрике формулы (1) и (2) приобретают вид:

Диэлектрическая проницаемость вакуума, как видим, равна единице. Во всех остальных случаях диэлектрическая проницаемость больше единицы. Диэлектрическая проницаемость воздуха настолько близка к единице, что при расчёте сил взаимодействия зарядов в воздухе пользуются формулами (1) и (2) для вакуума.

Закон Кулона показывает, что сила электрического взаимодействия проявляется только между двумя заряженными телами. Действительно, если в формуле (10.1) положить , то и при любом значении . Мы знаем, однако, что заряженное тело (например, натертая палочка сургуча) способно притягивать не наэлектризованные тела, например, кусочки бумаги (рис. 21) или металлической фольги.

Рис. 21. Притяжение незаряженных кусочков бумаги к заряженному сургучу

Насадим бумажную или металлическую стрелку на острие, укрепленное на изолирующей подставке так, чтобы стрелка легко могла вращаться на острие. Если вблизи такой стрелки поместить заряженное тело, то она немедленно повернется так, что ось ее будет направлена к заряженному телу (рис. 22). Повернув стрелку рукой и вновь отпустив, мы обнаружим, что она снова возвращается в прежнее положение. Какой конец стрелки окажется обращенным к заряженному телу – дело случая, но никогда стрелка не останавливается так, чтобы ось ее составила заметный угол с направлением па заряженное тело.

Рис. 22. Заряженное тело действует на незаряженную стрелку из металла или из бумаги, поворачивая ее

Для объяснения этих взаимодействий между заряженными и незаряженными телами нужно вспомнить явление индукции (§8) и закон Кулона (§ 10). Все тела (кусочки бумаги, стрелки) вблизи заряженного тела испытывают электризацию через влияние (индукцию), в результате которой имеющиеся в этих телах заряды перераспределяются так, что в одной части тела накапливаются избыточные заряды одного знака, а в другой – другого (рис. 23 и 24).

Рис. 23. Объяснение притяжения заряженным сургучом незаряженных кусочков бумаги

Рис. 24. Объяснение действия заряженного тела на незаряженную стрелку

При этом ближе к влияющему заряженному телу оказываются заряды, знак которых противоположен знаку его заряда; одноименные же заряды скапливаются в избытке на отдаленном конце. Взаимодействие заряда тела с индуцированными (наведенными) зарядами происходит по закону Кулона. Поэтому каждое тело с индуцированными зарядами одновременно и притягивается и отталкивается заряженным телом. Но отталкивание, имеющее место между зарядами, находящимися на большем расстоянии, слабее, чем притяжение. В результате «незаряженные» тела поворачиваются и притягиваются заряженным телом, как это и наблюдается на опыте.

Закон Кулона показывает, что сила электрического взаимодействия проявляется только между двумя заряженными телами. Действительно, если в формуле (10.1) положить , то и при любом значении . Мы знаем, однако, что заряженное тело (например, натертая палочка сургуча) способно притягивать не наэлектризованные тела, например, кусочки бумаги (рис. 21) или металлической фольги.

Рис. 21. Притяжение незаряженных кусочков бумаги к заряженному сургучу

Насадим бумажную или металлическую стрелку на острие, укрепленное на изолирующей подставке так, чтобы стрелка легко могла вращаться на острие. Если вблизи такой стрелки поместить заряженное тело, то она немедленно повернется так, что ось ее будет направлена к заряженному телу (рис. 22). Повернув стрелку рукой и вновь отпустив, мы обнаружим, что она снова возвращается в прежнее положение. Какой конец стрелки окажется обращенным к заряженному телу – дело случая, но никогда стрелка не останавливается так, чтобы ось ее составила заметный угол с направлением па заряженное тело.

Рис. 22. Заряженное тело действует на незаряженную стрелку из металла или из бумаги, поворачивая ее

Для объяснения этих взаимодействий между заряженными и незаряженными телами нужно вспомнить явление индукции (§8) и закон Кулона (§ 10). Все тела (кусочки бумаги, стрелки) вблизи заряженного тела испытывают электризацию через влияние (индукцию), в результате которой имеющиеся в этих телах заряды перераспределяются так, что в одной части тела накапливаются избыточные заряды одного знака, а в другой – другого (рис. 23 и 24).

Рис. 23. Объяснение притяжения заряженным сургучом незаряженных кусочков бумаги

Рис. 24. Объяснение действия заряженного тела на незаряженную стрелку

При этом ближе к влияющему заряженному телу оказываются заряды, знак которых противоположен знаку его заряда; одноименные же заряды скапливаются в избытке на отдаленном конце. Взаимодействие заряда тела с индуцированными (наведенными) зарядами происходит по закону Кулона. Поэтому каждое тело с индуцированными зарядами одновременно и притягивается и отталкивается заряженным телом. Но отталкивание, имеющее место между зарядами, находящимися на большем расстоянии, слабее, чем притяжение. В результате «незаряженные» тела поворачиваются и притягиваются заряженным телом, как это и наблюдается на опыте.

12.1. Поднесите заряженную палочку поочередно: к кусочку ваты, лежащему на стеклянной пластинке, и к такому же кусочку ваты, положенному на деревянный стол. Почему кусочки ваты притягиваются к палочке во втором случае сильнее, чем в первом? Обратите внимание на то, что дерево гораздо лучший проводник, чем стекло.

Изучение электрических явлений началось в Древней Греции с наблюдения, которое и породило впоследствии слово электричество. Было замечено, что, если натереть янтарь шерстью, он начинает притягивать мелкие предметы – например, пушинки и перья. Янтарь по-гречески электрон, поэтому этот вид взаимодействия назвали электрическим.

Сегодня любой может повторить этот знаменитый древнегреческий опыт даже без янтаря.

Поставим опыт

Расчешите сухие волосы пластмассовой расческой и поднесите ее к маленьким кусочкам бумаги, не касаясь их. Кусочки бумаги будут притягиваться к расческе (рис. 49.1).

Электрические взаимодействия обусловлены наличием у тел электрических зарядов.

Тело, обладающее электрическим зарядом, называют электрически заряженным (или просто заряженным), а сообщение телам электрических зарядов называют электризацией.

Натертый янтарь приобретает способность к электрическим взаимодействиям по той причине, что при трении он электризуется. Впоследствии выяснилось, что янтарь – не исключение: при трении электризуются многие тела. Вы сами, наверное, не раз чувствовали, как вас "бьет током", когда вы прикасаетесь к другому человеку после того, как сняли или надели шерстяную одежду. Это – тоже результат электризации при трении.

Опыты с наэлектризованными телами – например, с натертыми янтарем или расческой – показывают, что наэлектризованные тела притягивают незаряженные предметы. Ниже мы увидим, что это притяжение обусловлено тоже взаимодействием электрических зарядов.

1. Многие хозяйки, стараясь как можно тщательнее вытереть пыль с мебели, подолгу трут поверхность мебели сухой тряпкой. Но, увы – чем больше они стараются, тем скорее пыль снова садится на»хорошо вытертые» поверхности. То же самое происходит и тогда, когда тщательно протирают сухой тряпкой монитор компьютера или ноутбука. Как это объяснить?

Для получения заряженных тел в школьных опытах по электричеству обычно натирают шерстью эбонитовую палочку или шелком – стеклянную. (Эбонит – твердое вещество черного цвета, состоящее из серы и каучука.) В результате палочки приобретают электрический заряд.

Поставим опыт

Наэлектризуем одну легкую металлическую гильзу (металлический цилиндр), прикоснувшись к ней заряженной. стеклянной палочкой, а другую гильзу – прикоснувшись к ней заряженной эбонитовой палочкой. Мы увидим, что гильзы начнут притягиваться (рис. 49.2, а).
А вот две гильзы, наэлектризованные с помощью одной и той же палочки, будут всегда отталкиваться – независимо от того, какой палочкой мы пользовались для электризации гильз (рис. 49.2, б, в).

Этот опыт показывает, что электрические заряды бывают двух типов: заряды одного и того же типа отталкиваются, а заряды различных типов притягиваются. Чаще говорят не о типах, а о знаках зарядов, называя их положительными и отрицательными. Дело в том, что заряды противоположных знаков могут компенсировать друг друга (подобно тому, как сумма положительного и отрицательного чисел может быть равной нулю). Итак,

электрические заряды бывают двух знаков – положительные и отрицательные.

Заряд стеклянной палочки, натертой шелком, считают положительным, а заряд эбонитовой пилочки, натертой мехом или шерстью, – отрицательным.
Тела, имеющие заряд одного знака, называют заряженными одноименно, а тела, имеющие заряды разных знаков, называют заряженными разноименно.

Описанный выше опыт показал, что

одноименно заряженные тела отталкиваются, а разноименно заряженные – притягиваются .

2. а) Могут ли заряды трех шариков быть такими, что любая пара шариков взаимно отталкивается? взаимно притягивается?
б) Можно ли определить, не используя других тел или приборов: каков знак заряда каждого шарика? Имеют ли все шарики заряд одного и того же знака?
в) Опишите опыт, с помощью которого можно определить знак заряда каждого шарика.

Тела, не имеющие электрического заряда, называют незаряженными или электрически нейтральными. Почти все окружающие нас тела являются нейтральными. Но это не означает, что в них нет электрических зарядов!

Наоборот, в любом теле содержится огромное число положительно и отрицательно заряженных частиц, Как суммарный положительный заряд, так и суммарный отрицательный заряд этих частиц колоссален (скоро мы в этом убедимся). Но эти положительный и отрицательный заряды с очень большой точностью компенсируют друг друга.

2. Носители электрического заряда

Электрический заряд переносится только заряженными частицами. Электрического заряда без частиц не существует.

Заряженные частицы называют носителями электрического заряда. Если они могут перемещаться в веществе, их называют свободными носителями электрического заряда или просто свободными зарядами.

Чаще других в роли свободных зарядов выступают электроны. Как вы уже знаете из курса физики основной школы, эти очень легкие отрицательно заряженные частицы движутся вокруг массивного (по сравнению с электронами) положительно заряженного атомного ядра. Именно электроны являются свободными носителями заряда в металлах.

Переносить электрический заряд могут и ионы – атомы, которые потеряли или приобрели один или несколько электронов. (От греческого «ион» - странник.) Потерявший электрон (электроны) атом становится положительно заряженным ионом, а атом с избыточным электроном (электронами) – отрицательно заряженным ионом.

Например, в растворе поваренной соли (NaCl) свободными зарядами являются положительно заряженные ионы натрия и отрицательно заряженные ионы хлора.

3. В какой ион (положительно илн отрицательно заряженный) превращается атом, потерявший электрон?

4. Как изменяется масса атома, когда он становится: положительным ионом? отрицательным ионом?

Наиболее удаленные от ядра электроны слабее связаны с ядром. Поэтому при тесном контакте двух тел электроны могут переходить с одного тела на другое (рис. 49.3). Это объясняет, почему при трении тела часто электризуются.

В результате электризации в одном теле возникает избыток электронов, и поэтому оно приобретает отрицательный электрический заряд, а в другом теле возникает недостаток электронов, вследствие чего оно приобретает положительный заряд.

3. Проводники и диэлектрики

Вещества, в которых есть свободные носители электрического заряда, называют проводниками.

Хорошими проводниками являются все металлы. Проводниками являются также растворы солей и кислот – такие жидкости называют электролитами. (От греческого «литос» - разложимый, растворимый.) Электролитами являются, например, морская вода и кровь.

В металлах свободными зарядами являются электроны, а в электролитах – ионы.

Вещества, в которых нет свободных носителей электрического заряда, называют диэлектриками.

Диэлектриками являются многие пластмассы и ткани, сухое дерево, резина, стекло, а также многие жидкости – например, керосин и химически чистая (дистиллированная) вода. Газы, в том числе воздух, – также диэлектрики.

Хотя в диэлектриках свободных зарядов нет, это не означает, что они не участвуют в электрических явлениях. Дело в том, что в диэлектриках есть связанные заряды – это электроны, которые не могут перемещаться по всему образцу вещества, но могут перемещаться в пределах одного атома или молекулы.

Как мы увидим ниже, это приводит к тому, что диэлектрики существенно влияют на взаимодействие заряженных тел: например, они могут ослабить его в десятки раз.

Именно благодаря смещению связанных зарядов незаряженные диэлектрические тела (например, кусочки бумаги) притягиваются к заряженным телам. Ниже мы рассмотрим это подробнее.

4. Электризация через влияние

Благодаря тому, что в проводниках есть свободные заряды, проводники можно заряжать, даже не прикасаясь к ним заряженными телами. При этом тела заряжаются зарядами противоположных знаков.

Поставим опыт

Соединим проводником две металлические гильзы 1 и 2, лежащие на деревянном столе. Затем, не убирая проводник, поднесем к гильзе 1 положительно заряженную палочку, ке касаясь ею гильзы (рис. 49.4, а). Часть свободных электронов, притягиваясь к заряженной палочке, переместится с гильзы 2 на гильзу 1. В результате гильза 2 станет заряженной положительно, а гильза 1 – отрицательно.

Не удаляя заряженную палочку, уберем проводник, соединяющий гильзы (рис. 49.4, б). Они останутся заряженными, причем их заряды будут равны по модулю, но противоположны по знаку.

Теперь можно убрать и заряженную палочку: разноименные заряды останутся на гильзах.

Этот способ электризации тел называют электризацией через влияние.

Обратите внимание: электризация через влияние обусловлена перераспределением зарядов. Алгебраическая сумма зарядов тел остается при этом равной нулю: тела приобретают равные по модулю и противоположные по знаку заряды.

5. Расскажите подробно, как и почему изменился бы результат описанного опыта, если бы сначала удалили заряженную палочку, а потом – проводник, соединяющий гильзы. Проиллюстрируйте ваш рассказ схематическими рисунками.

6. Объясните, почему в описанном выше опыте человек держит металлическую палочку, соединяющую гильзу, за деревянную ручку. Опишите, что произошло бы, если бы при проведении этого опыта человек держал металлическую палочку непосредственно рукой. Примите во внимание„что человеческое тело является проводником.

5. Почему незаряженные тела притягиваются к заряженным?

Выясним теперь, почему незаряженные тела притягиваются к заряженным.

Поставим опыт

Приблизим к незаряженной металлической гильзе положительно заряженную палочку (рис. 49.5). Свободные электроны гильзы притянутся к положительно заряженной палочке, поэтому на ближней к палочке части гильзы появится отрицательный электрический заряд, а на дальней ее части из-за недостатка электронов возникнет положительный заряд.

В результате гильза будет притягиваться к палочке, потому что отрицательные заряды на гильзе находятся ближе к палочке.

7. Объясните, почему незаряженная металлическая гильза притягивается также к отрицательно заряженной палочке.

Итак, незаряженный проводник притягивается к заряженному телу, имеющему заряд любого знака, вследствие перераспределения свободных зарядов в незаряженном проводнике.

8. На рисунке 49.6 показано взаимодействие гильз А и В, а также гильз В и С. Известно, что гильза А заряжена положительно.
а) Можно ли утверждать, что гильза В заряжена? Если да, то каков знак ее заряда?

в) Можно ли предсказать, как будут взаимодействовать гильзы А и С?

Незаряженный диэлектрик тоже притягивается к телу, имеющему заряд любого знака. Объясняется это смещением связанных зарядов в диэлектрике: на поверхности диэлектрика возникают заряды разных знаков, причем ближе к заряженному телу оказываются заряды противоположного с ним знака. Это и приводит к притяжению.

Ниже мы рассмотрим смещение связанных зарядов в диэлектрике подробнее.

6. Роль электрических взаимодействий

Само существование атомов обусловлено электрическим взаимодействием положительно заряженных ядер и отрицательно заряженных электронов.

Электрическую природу имеет также взаимодействие атомов и молекул: благодаря ему атомы объединяются в молекулы, а нз атомов и молекул образуются жидкие и твердые тела. Электрическое взаимодействие нейтральных атомов и молекул объясняется неравномерным распределением электрического заряда в них.

Электрическими взаимодействиями обусловлены и многие процессы в живом организме. В частности, электрической является природа импульсов в нервных клетках, в том числе– в клетках головного мозга.

Электрические взаимодействия во много раз интенсивнее, чем гравитационные. Например, сила электрического отталкивания двух электронов превышает силу их гравитационного притяжения примерно в 4 * 10 42 раз. По сравнению с этим огромным числом кажется крошечной даже постоянная Авогадро! В § 50 мы проверим эту сравнительную оценку сил электрического и гравитационного взаимодействия.

Но если электрическое взаимодействие является таким сильным, почему же мы замечаем его вокруг себя так редко?

Дело в том, что практически все окружающие нас тела электрически нейтральны: огромный суммарный положительный электрический заряд атомных ядер с очень большой точностью компенсируется равным ему по модулю суммарным отрицательным зарядом электронов.

Только благодаря этой компенсации мы и не замечаем, насколько велики силы электрического взаимодействия, «спрятанные» внутри вещества.

Эта взаимная компенсация зарядов в окружающих нас телах не означает, однако, что электрические силы никак не проявляют себя, например, в механических явлениях. На самом деле мы неявно учитывали эти силы при изучении механики.

Как вы помните, в механике рассматривают три вида сил – силы тяготения, силы упругости и силы трения. Две из этих сил – сила упругости и сила трения – обусловлены взаимодействием атомов и молекул, из которых состоят тела, а взаимодействие атомов и молекул, как мы уже знаем, имеет электрическую природу.

Дополнительные вопросы и задания

9. Две одинаковые гильзы висят рядом на нитях одинаковой длины. На красной нити висит заряженная гильза, а на синей – незаряженная. Какая нить сильнее отклонена от вертикали?

10. Две металлические гильзы, висящие рядом на нитях, отталкиваются. Как будут взаимодействовать эти гильзы, если коснуться рукой одной из них?
11. На рисунке 49.7 показано, как взаимодействуют гильзы А и В, а также гильзы В и С.
а) Что можно сказать о заряде гильзы В?
б) Что можно сказать о заряде гильзы С?

12. Легкий металлический шарик подвешен между двумя вертикальными металлическими пластинами, заряды которых имеют противоположные знаки (рис. 49.8). Опишите, что будет происходить после того, как шарик коснется одной из пластин.