Болезни Военный билет Призыв

Значение кроссинговера. Кроссинговер, механизмы и эволюционное значение

КРОССИНГОВЕР (от английского crossing-over - перекрёст), обмен участками хромосом при их тесном сближении (конъюгации); частный случай рекомбинации. Термин «кроссинговер» предложен Т. Х. Морганом в 1911 году и обычно используется применительно к эукариотным организмам (клеткам). Кроссинговер происходит как при образовании половых клеток в ходе мейоза (мейотический кроссинговер), так и в митотически делящихся соматических клетках (митотический кроссинговер), где его частота значительно меньше, чем при мейотическом.

В норме конъюгация происходит в профазе мейоза между гомологичными хромосомами (каждая из них состоит из 2 сестринских хроматид, образуемых в процессе предшествующей репликации) по всей их длине с помощью так называемого синаптонемального комплекса - структуры, специфичной для каждого вида организмов. Мейотический кроссинговер, осуществляемый с участием специальных белков (в том числе ферментов), приводит к обмену равноценными, с равным числом генов участками хроматид. Такой кроссинговер регистрируют в клетке по наличию участков перекрёста (хиазм) в бивалентах - двух конъюгированных гомологичных хромосомах, наблюдаемых во время первого мейотического деления. В редких случаях происходит неравный кроссинговер, в результате которого участок одной из гомологичных хромосом может удвоиться (дупликация) или утроиться, а в другой хромосоме потеряться (делеция); кроссинговер в гомологичных участках одной хроматиды может быть причиной других хромосомных перестроек, например, инверсий, образующихся кольцевых хромосом. Кроссинговер между конъюгирующими негомологичными хромосомами приводит к транслокациям. При анализе потомства гетерозигот по аллелям генов, расположенных в одной и той же паре гомологичных хромосом, отмечают межгенный кроссинговер. В этом случае выявляется их сцепленное наследование - новые (неродительские, кроссоверные) комбинации аллелей появляются у потомков с меньшей частотой, чем исходные (родительские, некроссоверные). При внутригенном кроссинговере обмен происходит в пределах одного гена и приводит к появлению новых аллелей. Частота кроссинговера прямо пропорциональна физическому расстоянию между генами.

При большом расстоянии между генами возрастает вероятность множественного кроссинговера, который может имитировать отсутствие сцепленного наследования. Множественный кроссинговер на относительно небольших расстояниях сопровождается хромосомной интерференцией, при которой кроссинговер, происшедший в одном участке хромосомы, препятствует кроссинговер в близлежащих участках. Это явление было открыто Г. Дж. Мёллером (1916) и доказано цитологически Дж. Холдейном (1931). Величина интерференции (I) равняется 1 - С, где С - коэффициент коинциденции - отношения частоты регистрируемого множественного кроссинговера к частоте теоретически ожидаемого. Интерференция всегда положительна (одно событие кроссинговера препятствует прохождению другого). Наблюдаемые изредка (на очень коротких расстояниях) отрицательные значения интерференции объясняются конверсией генов. При наличии хромосомной интерференции хроматидная интерференция отсутствует, то есть вероятность вовлечения в повторный обмен любой из 4 хроматид в паре гомологичных хромосом не зависит от того, какая из хроматид была вовлечена в первый обмен. Частота мейотического кроссинговера может существенно отличаться у особей разного пола, увеличиваться при действии внешних факторов (повышенная температура, облучение, воздействие химических веществ), уменьшаться под действием некоторых мутаций. Так как кроссинговер приводит к появлению новых сочетаний аллелей на фоне гетерозиготности, он обеспечивает определённый уровень генотипической изменчивости, необходимой в эволюции и селекционной работе, и используется как один из инструментов генетического анализа.

Лит.: Жимулев И. Ф. Общая и молекулярная генетика. 4-е изд. Новосиб., 2007.

Мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток.

Митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

2. В зависимости от молекулярной гомологии участков хромосом, вступающих в кроссинговер.

Обычный (равный) – происходит обмен разными участками хромосом.

Неравный - наблюдается разрыв в нетождественных участках хромосом.

3. В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов.

Одинарный

Множественный

Значение кроссинговера:

Приводит к увеличению комбинативной изменчивости

Приводит к увеличению мутаций.

23. На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

24. Генетическая карта - схема расположения структурных генов и регуляторных элементов в хромосоме.

Первоначально взаимное расположение генов в хромосомах определяли по частоте кроссинговера между ними. Соответствующее генетическое расстояние измеряли в сантиморганах (или сантиморганидах, сМ): 1 сМ соответствует частоте кроссинговера в 1%. При таком методе генетического картирования физическое расстояние между генами нередко отличалось от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При современных методах генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т.п.н.) и соответствует физическому.

При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.

Генетическая карта маркерных последовательностей должна облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.

Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт – процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений.

25. Модификационная (фенотипическая) изменчивость - изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Предел проявления модификационной изменчивости организма при неизменном генотипе - норма реакции . Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции - спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) - например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы - интенсивность окраски большинства животных и многие другие качественные признаки.

Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков - широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

26. Мутационная изменчивость

Мутационная изменчивость - возникновение изменений в наследственном материале, в самих молекулах ДНК. Может измениться не только состав ДНК, но и ее количество (количество хромосом). На мутагенный процесс имеют влияние разные факторы внешней и внутренней среды.

КРОССИНГОВЕР КРОССИНГОВЕР

(англ. crossingover - перекрест), перекрест, взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей - хроматид; приводит к новым комбинациям аллелей разных генов. Важнейший механизм, обеспечивающий комбинативную изменчивость в популяциях и тем самым дающий материал для естеств. отбора. Протекает в мейотически, реже митотически делящихся клетках. Может приводить к перекомбинации больших участков хромосомы с неск. генами или частей одного гена (внутригенный К.), обеих нитей молекулы ДНК или только одной. Частота К. между генами отражает расстояние между ними в хромосоме и определяется как частота кроссоверных (с неродительским сочетанием аллелей) особей в анализирующем скрещивании, т. е. как частота кроссоверных гамет; может изменяться под действием нек-рых физич., химич. и физиол. факторов. Молекулярный механизм К. окончательно не выяснен. К. используют в генетич. анализе для решения мн. проблем генетики. (см. РЕКОМБИНАЦИЯ , ГЕНЕТИЧЕСКАЯ КАРТА ХРОМОСОМЫ).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

кро́ссинго́вер

Взаимный обмен участками между гомологичными (попарными) хромосомами. Происходит в процессе клеточных делений – мейоза и (гораздо реже) митоза на стадии профазы, когда спаренные гомологичные хромосомы уже содержат по две сестринские хроматиды . На этой четырёххроматидной стадии и осуществляется обмен гомологичными участками хроматид: в каждой гомологичной хромосоме одна хроматида разрывается, а затем образовавшиеся фрагменты соседних хроматид воссоединяются заново, но уже крест-накрест (англ. «кроссинговер» – перекрёст). При кроссинговере гены из одной гомологичной хромосомы перемещаются в другую, в результате чего возникают новые комбинации аллелей генов, т.е. происходит рекомбинация генетического материала. Кроссинговер – один из механизмов наследственной изменчивости .

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "КРОССИНГОВЕР" в других словарях:

    Кроссинговер … Орфографический словарь-справочник

    - (англ. crossing over) взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов. Происходит в процессе деления клеток; один из механизмов наследственной изменчивости. В… … Большой Энциклопедический словарь

Кроссинговер (от англ. crossing–over – перекрёст) – это обмен гомологичными участками гомологичных хромосом (хроматид).

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с гаплотипами хроматид АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В , тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b . Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные гаплотипы (хроматиды) Ab и аВ . В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными ; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными , с их участием разовьются кроссоверные гаметы, зиготы и особи.

Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний (гаплотипов) наследственных задатков в хромосомах.

Примечание. Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе (см. ниже). В частности, возможна смена матрицы в вилке репликации.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m . Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).



Виды кроссинговера:

1.Двойной и множественный кроссинговер

2.Соматический (митотический) кроссинговер

3.Неравный кроссинговер

Эволюционное значение кроссинговера

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген , контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что…

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

кроссинговер (англ. crossingover; син. перекрест хромосом)

обмен участками гомологичных хромосом в процессе клеточного деления, обычно в профазе первого мейоза, иногда в митозе; приводит к новому сочетанию генов, обусловливающему изменения фенотипа; наряду с возникновением мутаций К. является важным фактором эволюции организмов.

Энциклопедический словарь, 1998 г.

кроссинговер

КРОССИНГОВЕР (англ. crossing-over) взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов. Происходит в процессе деления клеток; один из механизмов наследственной изменчивости. В экспериментальной генетике используется для построения генетических карт хромосом.

Кроссинговер

(от англ. crossingover), перекрест, взаимный обмен участками парных хромосом, происходящий в результате разрыва и соединения в новом порядке их нитей ≈ хроматид (рис. ); приводит к перераспределению (рекомбинации) сцепленных генов . Т. о., К. ≈ важнейший механизм, обеспечивающий комбинаторную изменчивость, а следовательно, ≈ один из главных факторов эволюции. К., как правило, имеет место в профазе первого деления половых клеток (см. Мейоз), когда их хромосомы представлены четырьмя нитями. В месте перекреста удаётся цитологически обнаружить характерную фигуру перекрещенных хромосом ≈ хиазму. Результат К. можно выявить по новому сочетанию сцепленных генов (если аллели гомологичных хромосом, участвовавших в К., были гетерозиготны). Этот приём, открытый американским генетиком Т. Морганом, позволил доказать линейное размещение генов в хромосоме и разработать метод установления их взаиморасположения (см. Генетические карты хромосом). В 1933 немецкий учёный К. Штерн цитологически доказал осуществление К. при обмене генами между хромосомами. Частота К. в грубом приближении зависит от линейного расстояния между генами. В случае, если на участке между двумя генами происходит сразу двойной или множественный обмен, частота перекомбинации этих генов уменьшается. Если разрывы в хромосомах, обменивающихся участками, произойдут не в строго идентичных точках, то наступит так называемый неравный К. При этом одна из хромосом получит дополнительный генетический материал, а в гомологичной хромосоме окажется его нехватка. У высших организмов обнаружен К. и в клетках тела (соматических), в этом случае он приводит к формированию мозаичных признаков. К. может захватывать обе нити молекулы ДНК или только одну; он может затронуть большой участок хромосомы с несколькими генами или часть одного гена (внутригенный К.). Разрывы и воссоединения хромосом при К. осуществляются при участии ряда ферментов. Однако молекулярный механизм К. окончательно не выяснен. См. также Рекомбинация, Сцепление генов.

Лит.: Кушев В. В., Механизмы генетической рекомбинации, Л., 1971.

В. Н. Сойфер.

Википедия

Кроссинговер

Кроссинго́вер или перекрёст - процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер. Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, место расположения этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» . Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

Примеры употребления слова кроссинговер в литературе.

Теперь слышалось другое: гены, аллели, кроссинговер , штаммы, клоны, чистые линии.

В любом учебнике генетики можно найти закон кроссинговера , закон линейного расположения генов и т.

После него у Четверикова появились пробирки с агаром, мушки, всякие красноглазые мутации, кроссинговеры , и наконец образовался Дрозсоор.

Возникновение в результате митоза генетически неадекватных дочерних клеток - например, в результате митотического кроссинговера , неправильного расхождения хромосом и т.