Болезни Военный билет Призыв

К какой группе относится бензол. Что такое бензол? Строение бензола, формула, свойства, применение. Получение и производство

Среди огромного арсенала органических веществ можно выделить несколько соединений, открытие и изучение которых сопровождалось многолетними научными спорами. К ним по праву относится бензол. Строение бензола в химии было окончательно принято лишь к началу 20 столетия, тогда как элементный состав вещества определили еще в 1825 году, выделив его из каменноугольной смолы, которую получали как побочный продукт коксования угля.

Бензол вместе с толуолом, антраценом, фенолом, нафталином в настоящее время относят к ароматическим углеводородам. В нашей статье мы рассмотрим, каковы же этого углеводорода, выясним физические свойства, например, такие как растворимость, температуру кипения и плотность бензола, а также обозначим области применения соединения в промышленности и сельском хозяйстве.

Что такое арены?

Химия органических соединений классифицирует все известные вещества на несколько групп, например, такие как алканы, алкины, спирты, альдегиды и т.д. Главной отличительной чертой каждого класса веществ является наличие определенных типов связей. Молекулы предельных углеводородов содержат только сигма-связь, вещества ряда этилена - двойную, у алкинов связь тройная. К какому же классу относится бензол?

Строение бензола указывает на присутствие в его молекуле ароматического кольца, названного бензольным ядром. Все соединения органической природы, содержащие одно или несколько таких колец в составе своих молекул, относят к классу аренов (ароматических углеводородов). Кроме бензола, который мы сейчас рассматриваем, в эту группу входит большое количество очень важных веществ, каких как толуол, анилин, фенол и другие.

Как решили проблему строения молекулы ароматического углеводорода

Вначале ученые установили выразив его формулой С 6 Н 6 , согласно которой относительная молекулярная масса бензола равна 78. Затем было предложено несколько вариантов структурных формул, но ни одна из них не соответствовала реальным физическим и химическим свойствам бензола, наблюдаемым химиками в лабораторных опытах.

Прошло около сорока лет, прежде чем немецкий исследователь А. Кекуле представил свою версию структурной формулы, которую имеет молекула бензола. В ней присутствовали три двойных связи, указывающие на возможный непредельный характер химических свойств углеводорода. Это вступало в противоречие с действительно существующим характером взаимодействий соединения формулы С 6 Н 6 с другими веществами, например, с бромом, нитратной кислотой, хлором.

Только после выяснения электронной конфигурации молекулы бензола в его структурной формуле появилось обозначение бензольного ядра (кольца), а сама она до сих пор используется в курсе органической химии.

Электронная конфигурация молекулы С6Н6

Какую же пространственную структуру имеет бензол? Строение бензола окончательно было подтверждено благодаря двум реакциям: тримеризации ацетилена с образованием бензола и его восстановления водородом до циклогексана. Оказалось, что атомы углерода, соединяясь между собой, образуют плоский шестиугольник и находятся в состоянии sp 2 -гибридизации, используя на связи с другими атомами три из четырех своих валентных электронов.

Оставшиеся шесть свободных p-электронов располагаются перпендикулярно плоскости молекулы. Перекрываясь между собой, они формируют общее электронное облако, названное бензольным ядром.

Природа полуторной химической связи

Хорошо известно, что физические и химические свойства соединений зависят, прежде всего, от их внутреннего строения и типов химических связей, возникающих между атомами. Рассмотрев электронную структуру бензола, можно прийти к выводу, что его молекула не имеет ни простых, ни двойных связей, которые можно увидеть в формуле Кекуле. Наоборот, между атомами углерода все химические связи равноценны. Более того, общее π-электронное облако (всех шести атомов С) образует химический тип связи, названный полуторной, или ароматической. Именно этот факт обуславливает специфические свойства бензольного кольца и, как следствие, характер химического взаимодействия ароматических углеводородов с другими веществами.

Физические свойства

При понижении температуры жидкость переходит в твердую фазу, и бензол превращается в белую кристаллическую массу. Она легко плавится при температуре 5,5 °С. В обычных условиях вещество представляет собой бесцветную жидкость со своеобразным запахом. Его температура кипения составляет 80,1 °С.

Плотность бензола меняется в зависимости от изменения температуры. Чем температура выше, тем плотность меньше. Приведем несколько примеров. При температуре 10° плотность составляет 0,8884 г/мл, а при 20° - 0,8786 г/мл. Молекулы бензола неполярные, поэтому вещество нерастворимо в воде. Зато само соединение является хорошим например, для жиров.

Особенности химических свойств бензола

Экспериментально установлено, что ароматическое бензольное ядро устойчиво, т.е. характеризуется высокой стойкостью к разрыву. Этот факт служит объяснением склонности вещества к протеканию реакций по типу замещения, например, с хлором при обычных условиях, с бромом, с нитратной кислотой в присутствии катализатора. Нужно отметить высокую устойчивость бензола к действию окислителей, таких как перманганат калия и бромная вода. Это еще раз подтверждает факт отсутствия в молекуле арена двойных связей. Жесткое окисление, иначе называемое горением, характерно для всех ароматических углеводородов. Так как процентное содержание углерода в молекуле С 6 Н 6 велико, горение бензола сопровождается коптящим пламенем с образованием частиц сажи. В результате реакции образуется углекислый газ и вода. Интересным представляется вопрос: может ли ароматический углеводород вступать в реакции присоединения? Рассмотрим его далее более подробно.

К чему приводит разрыв бензольного ядра?

Напомним, что в молекулах аренов присутствует полуторная связь, возникшая в результате перекрывания шести р-электронов атомов карбона. Она и лежит в основе бензольного ядра. Чтобы его разрушить и провести реакцию присоединения, необходим ряд специальных условий, например, таких как световое облучение, высокие температура и давление, катализаторы. Смесь бензола и хлора вступает в реакцию присоединения под действием ультрафиолетового излучения. Продуктом такого взаимодействия будет гексахлорциклогексан - токсическое кристаллическое вещество, применяемое в сельском хозяйстве в качестве инсектицида. В молекуле гексахлорана уже нет бензольного ядра, по месту его разрыва произошло присоединение шести атомов хлора.

Области практического применения бензола

В различных отраслях промышленности вещество широко используется как растворитель, а также как сырье для дальнейшего получения лаков, пластических масс, красителей, в качестве добавки к моторному топливу. Еще больший диапазон применения имеют производные бензола и его гомологи. Например, нитробензол С 6 Н 5 NO 2 является основным реагентом для получения анилина. В результате с хлором в присутствии хлорида алюминия в качестве катализатора получают гексахлорбензол. Его применяют для предпосевной обработки семян, а также используют в деревообрабатывающей промышленности для защиты древесины от вредителей. Нитрованием гомолога бензола (толуола) получают взрывчатое вещество, известное как тротил или тол.

В данной статье мы рассмотрели такие свойства ароматического соединения, как реакции присоединения и замещения, горение бензола, а также определили области его применения в промышленности и сельском хозяйстве.

Основное применение бензола - это синтез множества других органических веществ. Процесс, в течение которого можно получить продукт, - это коксование угля. Если нагревать это сырье при высоких температурах и при этом ограничить доступ воздуха, то будет образовываться множество летучих продуктов горения, среди которых выделяют и бензол.

Образование вещества

Ученый Н. Д. Зелинский в свое время доказал, что получить бензол можно не только при коксовании угля. Получить это вещество можно и из такого продукта, как циклогексан, если будет наблюдаться каталитическое воздействие платины или палладия на это вещество (при температуре в 300 градусов по Цельсию). Кроме того, такое вещество, как гексан, также способно преобразовываться в бензол, если применить правильный каталитический процесс и процедуру нагревания.

На сегодняшний день большое практическое значение получили такие операции, как получение бензола из предельных углеводородов и циклопарафинов. Это обусловлено тем, что потребность в этом веществе стремительно растет.

Использование летучего вещества

Область применения бензола довольно обширна. Основным направлением стало получение других веществ на основе этого реактива. Так, к примеру, если использовать реакцию нитрирования, то можно получить нитробензол, если провести процедуру хлорирования, то можно получить хлорбензол, который в жизни чаще всего называют растворителем, а также множество других составов.

Широкое распространение получила процедура применения бензола в качестве исходного продукта для создания лекарственных и душистых веществ. Часто применяется в процессах синтеза мономеров для высокомолекулярных соединений, для создания красителей.

Производные хлора и бензола в настоящее время успешно используются в сельском хозяйстве. Здесь их применяют в качестве химических средств защиты для растений. К примеру, продукт, в котором атомы водорода замещены атомами хлора, гексахлорбензол, активно применяется в качестве продукта для сухого протравливания семян пшеницы и ржи.

Химическая промышленность

Если перечислять области применение бензола, то их очень много. Однако в некоторых он играет одну из ключевых ролей, например в химической промышленности. Здесь этот компонент является одним из наиболее востребованных, так как он является исходным элементом для производства множества других, а также является растворителем во многих операциях. Стоит отметить, что бензол способен растворить практически любые органические соединения. Если в первой половине 20-го века применение бензола приходилось в основном на создание таких составов, как нитро- и динитросоединения, то на сегодняшний день самыми распространенными веществами стали этилбензол, кумол и циклогексан. 60 % всего бензола приходится именно на создание первых двух элементов.

Разновидности состава и их применение

Сам по себе бензол в чистом виде практически не используется. Однако его производные получили очень широкое применение.

Этилбензол, к примеру, распространен в качестве промежуточного компонента при изготовлении стирола, а также успешно используется в качестве добавки для моторного топлива.

Широкий интерес вызывает и один из новых процессов, используя который можно получить стирол прямо из бензола. Применение этого вещества в сочетании с этиленом и Pd-катализатором во время окислительного процесса и является таким способом. Стоит отметить, что при получении этилбензола выделяется побочное вещество, которое стали называть диэтилбензолом. Сам по себе этот элемент не слишком активно применяется, однако с его помощью стало возможным получение дивинилбензола, а уже этот компонент является очень ценным мономером для производства

Еще одним важным компонентом является кумол. Этот продукт - также производная от бензола, а используется он для создания вещества - фенола, который получил широкое практическое применение.

Стоит отметить, что веществ, которые образуются при помощи бензола, очень и очень много.

Бензилхлорид - продукт хлорметирования. Наибольшее распространение он получил при изготовлении бензилового спирта, сложных эфиров, красителей и т. д.

Дифенилметан - вещество, полученное при взаимодействии бензола с такими компонентами, как бензилхлорид или формальдегид. Этот продукт может быть использован в качестве душистого вещества, так как имеет запах герани, или же в качестве растворителя для лакокрасочных изделий.

Известны также сульфопроизводные бензола. Эти продукты являются промежуточными веществами, основное предназначение которых, - получение более сложных промежуточных компонентов. На основе определенных бензолсульфокислот можно получить конечные составы, которые можно применять в производстве полимерных материалов.

Первые попытки использования бензола в медицине были сделаны еще очень давно. Первое направление, где он был применен, - это онкогематология. Основная идея применения бензола состояла в том, чтобы использовать его для лечения такой болезни, как лейкемия. Скорость распространения этой идеи была огромной. В 1912 году медики по всему миру применяли это вещество для того, чтобы лечить белокровие у пациентов. Сначала вещество использовалось только для приема внутрь. Однако довольно скоро были проведены попытки инъекции. К этому времени вспышка использования сырья в лечебных целях уже спадала. Выяснилось, что все же вылечить лейкемию таким способом не получается. Кроме того, этот химикат обладает множеством опасных побочных эффектов.

Однако пока состав все еще применялся, врачи выделяли некоторые положительные моменты. К примеру, бензол приводил к тому, что количество белых шариков в крови значительно уменьшалось к концу 2-й и началу 3-й недели. Красные кровяные тельца изначально уменьшались в своем количестве, однако потом это быстро проходило, а количество снова росло. Отмечалось также, что бензол способен улучшить лейкемический состав крови в тех случаях, когда рентгеновский способ был не способен справиться.

Однако, как уже говорилось, этот метод довольно быстро был признан недейственным, опасным.

Таким соединением, как бензол, госпожа Химия в своем хозяйстве окончательно и бесповоротно обзавелась только в 1833 году. Бензол - это соединение, которое имеет вспыльчивый, можно сказать, даже взрывной характер. Как это выяснили?

История

Иоган Глаубер в 1649 году обратил свое внимание на соединение, которое благополучно образовалось, когда химик занимался обработкой каменноугольной смолы. Но оно пожелало остаться инкогнито.

Спустя около 170 лет, а если быть гораздо более точным, в середине двадцатых годов XIX века, по воле случая из светильного газа, а именно из выделившегося конденсата, извлекли бензол. Таким стараниям человечество обязано Майклу Фарадею, ученому из Англии.

Эстафету по приобретению бензола перехватил немец Эйльгард Мичерлих. Это случилось, когда проходил процесс обработки безводных солей кальция бензойной кислоты. Возможно, поэтому соединению дали такое наименование - бензол. Еще, как вариант, ученый называл его бензином. Благовоние, если в переводе с арабского.

Бензол красиво и ярко горит, в связи с этими наблюдениями Огюст Лоран посоветовал назвать его «фен» или «бензен». Яркий, блистающий - если перевести с греческого языка.

Опираясь на мнение понятие о природе электронной связи, о качествах бензола, ученый предоставил молекулу соединения в виде следующего образа. Это шестиугольник. В него вписана окружность. Вышесказанное говорит о том, что у бензола целостное электронное облако, которое благополучно заключает шесть (без исключения) атомов углерода цикла. Скрепленных бинарных связей не наблюдается.

С бензолом раньше работали как с растворителем. А в основном, как говорится, не состоял, не участвовал, не привлекался. Но это в XIX веке. В XX произошли существенные перемены. Свойства бензола выражают ценнейшие качества, которые помогли ему стать более популярным. Октановое число, которое оказалось высоким, предоставило возможность применять его в качестве элемента топлива для заправки автомобилей. Сие действо послужило толчком обширного изъятия бензола, добыча оного осуществляется как вторичный продукт коксования изготовления стали.

К сороковым годам в химической сфере бензол начал потребляться в изготовлении веществ, которые быстро взрываются. XX век увенчал себя тем, что нефтеперерабатывающая промышленность выработала бензола столько, что стала снабжать химическую индустрию.

Характеристика бензола

Ненасыщенные углеводороды очень схожи с бензолом. Например, углеводородный ряд этилена характеризует себя как ненасыщенный углеводород. Ему свойственна реакция присоединения. Бензол охотно вступает в Все это благодаря атомам, которые находятся в одной плоскости. И как факт - сопряженное электронное облако.

Если в формуле присутствует бензольное кольцо, значит, можно прийти к элементарному выводу, что это - бензол, структурная формула которого выглядит именно так.

Физические свойства

Бензол - это жидкость которая не имеет цвета, зато имеет достойный сожаления запах. Плавится бензол, когда температура достигает 5,52 градусов по Цельсию. Кипит при 80,1. Плотность составляет 0,879 г/см 3 , масса молярная равна 78,11 г/моль. При горении сильно коптит. Формирует взрывоопасные соединения, когда проникает воздух. породы (бензин, эфир и прочие) с описываемым веществом соединяются без проблем. Азеотропное соединение создает с водой. Нагрев до начала парообразования происходит при 69,25 градусов (91 % бензола). При 25 градусах по Цельсию может растворяться в воде 1,79 г/л.

Химические свойства

Бензол реагирует с серной и азотной кислотой. А также с алкенами, галогенами, хлоралканами. Реакция замещения - вот что ему свойственно. Температура давления влияет на прорыв кольца бензола, которое проходит в достаточно резких условиях.

Каждое уравнение реакции бензола мы можем рассмотреть более детально.

1. Электрофильное замещение. Бром, при наличии катализатора, взаимодействует с хлором. В результате получаем хлоробензол:

С6H6+3Cl2 → C6H5Cl + HCl

2. Реакция Фриделя-Крафтса, или алкилирование бензола. Появление алкилбензолов происходит благодаря соединению с алканами, которые являются галогенопроизводными:

C6H6 + C2H5Br → C6H5C2H5 + HBr

3. Электрофильное замещение. Здесь идет реакция нитрования и сульфирования. Выглядеть уравнение бензола будет следующим образом:

C6H6 + H2SO4 → C6H5SO3H + H2O

C6H6 + HNO3 → C6H5NO2 + H2O

4. Бензол при горении:

2C6H6 + 15O2 → 12CO2 + 6H2O

При определенных условиях проявляет характер, свойственный насыщенным углеводородам. П-электронное облако, которое находится в строении рассматриваемого вещества, объясняет эти реакции.

От спецтехнологии зависят различные виды бензола. Отсюда происходит маркировка нефтяного бензола. Например, очищенный и высшей очистки, для синтеза. Хотелось бы отдельно отметить гомологи бензола, а если конкретнее - их химические свойства. Это алкилбензолы.

Гомологи бензола гораздо охотнее реагируют. Но вышесказанные реакции бензола, а именно гомологов, проходят с некоторым отличием.

Галогенирование алкилбензолов

Вид уравнения следующий:

С6H5-CH3 + Br = C6H5-CH2Br + HBr.

Стремление брома в кольцо бензола не наблюдается. Он выходит в цепочку сбоку. Зато благодаря катализатору соли Al(+3) бром смело идет в кольцо.

Нитрование алкилбензолов

Благодаря серной и азотной кислотам нитрируются бензолы и алкилбензолы. Реакционноспособные алкилбензолы. Получаются два продукта из представленных трех - это пара- и орто-изомеры. Можно записать одну из формул:

C6H5 - CH3 + 3HNO3 → C6H2CH3 (NO2)3.

Окисление

Для бензола это неприемлемо. Зато алкилбензолы реагируют охотно. Например, бензойная кислота. Формула приведена ниже:

C6H5CH3 + [O] → C6H5COOH.

Алкилбензол и бензол, их гидрирование

В присутствии усилителя водород начинает реагировать с бензолом, вследствие чего образуется циклогексан, как об этом говорилось выше. Подобным образом алкибензолы без проблем преобразуются в алкилциклогексаны. Для получения алкилциклогексана требуется подвергнуть гидрированию нужный алкилбензол. В основном это необходимая процедура для производства беспримесного продукта. И это далеко не все реакции бензола и алкилбензола.

Производство бензола. Промышленность

Фундамент такого производства зиждется на том, чтобы переработать составляющие: толуола, нафты, смолы, которая выделяется при крекинге угля, и прочих. Посему бензол производится на нефтехимических, металлургических предприятиях. Важно знать, как получить бензол разной степени очистки, ведь от принципа изготовления и предназначения следует прямая зависимость марки данного вещества.

Львиную долю изготавливают термокаталитическим реформингом каустобиолитной части, выкипающей при 65 градусах, обладающей эффектом экстракта, дистилляции с диметилформамидом.

При выработке этилена и пропилена получают жидкие продукты, которые образуются в ходе распада неорганических и органических соединений под воздействием тепла. Из них и выделяют бензол. Но, к сожалению, исходного материала для этого варианта добычи бензола не так уж и много. Потому интересующее нас вещество добывают риформингом. Посредством такого способа объем бензола увеличивается.

Путем деалкилирования при температуре 610-830 градусов со знаком плюс, при наличии пара, образующегося при кипении воды и водорода, из толуола получают бензол. Есть еще вариант - каталитический. Когда наблюдается наличие цеолитов, или, как вариант, катализаторов оксидных, при соблюдении температурного режима 227-627 градусов.

Существует еще один, более старый, способ разработки бензола. С помощью абсорбции поглотителями органического происхождения его выделяют из конечного результата коксования каменного угля. Продукт парогазовый и заранее подвергся охлаждению. Например, в ход пускается масло, источником которого является нефть или каменный уголь. Когда перегонка осуществляется с водяным паром, поглотитель отделяется. Гидроочистка помогает сырой бензол освободить от лишних веществ.

Каменноугольное сырье

В металлургии при использовании каменного угля, а если уточнить - его сухой перегонки, получают кокс. Во время этой процедуры ограничивается поступление воздуха. Не стоит забывать и то, что до температуры 1200-1500 по Цельсию нагревается уголь.

Углехимический бензол нуждается в доскональном очищении. Нужно избавиться в обязательном порядке от метила циклогексана и его товарища н-гептана. тоже должны быть изъяты. Бензолу предстоит процесс разделения, очищения, который будет осуществляться не один раз.

Метод, описанный выше, самый старый, но по истечении времени он теряет свои высокие позиции.

Нефтяные фракции

0,3-1,2 % - такие показатели состава нашего героя в необработанной нефти. Мизерные показатели, чтобы вкладывать финансы и силы. Лучше всего задействовать промышленную процедуру по переработке нефтяных фракций. То есть каталитический риформинг. При наличии алюмо-платино-рениевого усилителя растет процент вмещения ароматических углеводов, и возрастает показатель, определяющий возможности топлива не самовозгораться при его сжатии.

Смолы пиролиза

Если добывать наш нефтепродукт из не твердого сырья, а именно путем пиролиза возникающих при изготовлении пропилена и этилена, то сей подход окажется наиболее приемлемым. Если быть точным, бензол выделяется из пироконденсата. Разложение определенных долей нуждается в гидроочистке. При очистке отстраняются сернистые и непредельные смеси. В исходном результате замечено содержание ксилола, толуола, бензола. С помощью перегона, который является экстактивным, БТК-группа разделяется и получается бензол.

Гидродеалкилирование толуола

Главные герои процесса, коктейль из водородного потока и толуола, подаются нагретыми в реактор. Толуол проходит через пласт катализатора. Во время этого процесса метильная группа отделяется с формированием бензола. Здесь уместен определенный способ очищения. Результатом становится высокочистое вещество (для нитрования).

Диспропорционирование толуола

В следствии отторжения метильного класса совершается созидание до бензола, окисляется ксилол. В данном процессе было замечено переалкилирование. Действие катализации происходит благодаря палладию, платине и неодиму, которые находятся на оксиде алюминия.

В реактор со стойким пластом катализатора подается талуол и водород. Его цель - удержать оседание на плоскость катализатора углеводородов. Поток, который выходит из реактора, подвергается охлаждению, а на рецикл благополучно извлекается водород. То, что осталось, перегоняется трижды. На начальной стадии изымаются соединения, которые являются неароматическими. Вторым добывается бензол, и последний шаг - это выделение ксилолов.

Ацетилена тримеризация

Благодаря трудам французского физико-химика Марселена Бертло из ацетилена стали изготавливать бензол. Но при этом выделялся тяжелый коктейль из многих других элементов. Стоял вопрос, как понизить температуру реакции. Ответ был получен лишь в конце сороковых годов XX века. В. Реппе нашёл соответствующий катализатор, им оказался никель. Тримеризация - это единственный вариант обрести из ацетилена бензол.

Образование бензола происходит с помощью активированного угля. При больших показателях теплоты над углем проходит ацетилен. Бензол выделяется, если температура составляет не менее 410 градусов. При этом еще рождаются разнообразные ароматические углеводороды. Поэтому необходима хорошая аппаратура, которая способна качественно очистить ацетилен. При таком трудоемком способе, как тримеризация, ацетилена расходуется очень много. Чтобы получить 15 мл бензола, берется 20 литров ацетилена. Можно просмотреть, как это выглядит в реакция не заставит себя долго ждать.

3C2H2 → C6H6 (уравнение Зелинского).

3CH → CH = (t, kat) = C6H6.

Где используется бензол

Бензол — это достаточно популярное детище химии. Особенно часто было замечено, как бензол принимали на вооружение в изготовлении кумола, циклогексана, этилбензола. Для создания стирола без этилбензола не обойтись. Исходным материалом для того, чтобы выработать капролактам, служит циклогексан. Изготавливая термопластичную смолу, применяют именно капролактам. Описываемое вещество незаменимо при изготовлении разных красок, лаков.

Насколько опасен бензол

Бензол - это токсичное вещество. Проявление ощущения недомогания, которое сопровождается тошнотой и сильным головокружением - это признак отравления. Не исключается даже летальный исход. Чувство неописуемого восторга - это не менее тревожные звоночки при отравлении бензолом.

Бензол в жидком состоянии вызывает раздражение кожи. Бензольные пары с легкостью проникают даже через неповрежденный кожный покров. При самых недолгосрочных контактах с веществом в небольшой дозе, но на регулярной основе, неприятные последствия не заставят себя долго ждать. Это может быть поражение костного мозга и лейкозы острого характера разного вида.

Ко всему прочему, вещество вызывает зависимость у человека. Бензол действует как дурман. Из табачного дыма получается дегтеобразный продукт. Кода его изучили, то пришли к выводу, что содержание последнего небезопасно для человека. Обнаружилось помимо присутствия никотина еще и наличие ароматических углеводов вида бензпирена. Отличительной чертой бензпирена являются канцерогенные вещества. Действие они оказывают очень вредное. Например, вызывают онкологические заболевания.

Несмотря на вышесказанное, бензол является стартовым сырьем для производства разнообразных лекарственных препаратов, пластмасс, резины синтетического происхождения и, конечно же, красителей. Это самое распространённое детище химии и ароматическое соединение.

Ароматические углеводороды составляют важную часть циклического ряда органических соединений. Простейшим представителем таких углеводородов является бензол. Формула этого вещества не только выделила его из ряда остальных углеводородов, но и дала толчок в развитии нового направления органической химии.

Открытие ароматических углеводородов

Ароматические углеводороды были открыты в начале 19 века. В те времена наиболее распространенным топливом для уличного освещения являлся светильный газ. Из его конденсата великий английский физик Майкл Фарадей выделил в 1825 году три грамма маслянистого вещества, подробно описал его свойства и назвал так: карбюрированный водород. В 1834 году немецкий ученый, химик Митчерлих, нагревая бензойную кислоту с известью, получил бензол. Формула, по которой протекала данная реакция, представлена ниже:

C6 H5 COOH + CaO сплавление C6 H6 + CaCO3.

В то время редкую бензойную кислоту получали из смолы бензое, которую могут выделять некоторые тропические растения. В 1845 году новое соединение было обнаружено в каменноугольной смоле, которая являлась вполне доступным сырьем для получения нового вещества в промышленных масштабах. Другим источником бензола является нефть, полученная в некоторых месторождениях. Чтобы обеспечить потребность промышленных предприятий в бензоле, его получают также путем ароматизации некоторых групп ациклических углеводородов нефти.

Современный вариант названия предложил немецких ученый Либих. Корень слова «бензол» следует искать в арабских языках - там оно переводится как «ладан».

Физические свойства бензола

Бензол является бесцветной жидкостью со специфическим запахом. Это вещество кипит при температуре 80,1 о С, отвердевает при 5,5 о С и превращается при этом в белый кристаллический порошок. Бензол практически не проводит тепло и электричество, плохо растворяется в воде и хорошо - в различных маслах. Ароматические свойства бензола отражают суть структуры его внутреннего строения: относительно устойчивое бензольное ядро и неопределенный состав.

Химическая классификация бензола

Бензол и его гомологи - толуол и этилбензол - представляют собой ароматический ряд циклических углеводородов. Строение каждого из этих веществ содержит распространенную структуру, названную бензоловым кольцом. Структура каждого из вышеперечисленных веществ содержит особую циклическую группировку, созданную шестью атомами углерода. Она получила название бензольного ароматического ядра.

История открытия

Установление внутреннего строения бензола растянулось на несколько десятилетий. Основные принципы строения (кольцевая модель) были предложены в 1865 году химиком А. Кекуле. Как рассказывает легенда, немецкий ученый увидел формулу этого элемента во сне. Позднее было предложено упрощенное написание структуры вещества, называемого так: бензол. Формула этого вещества представляет собой шестиугольник. Символы углерода и водорода, которые должны быть расположены в углах шестиугольника, опускаются. Таким образом, получается простой правильный шестиугольник с чередующимися одинарными и двойными линиями на сторонах. Общая формула бензола представлена на рисунке ниже.

Ароматические углеводороды и бензол

Химическая формула этого элемента позволяет утверждать, что для бензола реакции присоединения нехарактерны. Для него, как и для других элементов ароматического ряда, типичны реакции замещения атомов водорода в бензольном кольце.

Реакция сульфирования

При обеспечения взаимодействия концентрированной серной кислоты и бензола, повышая температуру реакции, можно получить бензосульфокислоту и воду. Структурная формула бензола в этой реакции выглядит следующим образом:

Реакция галогенирования

Бром или хром в присутствии катализатора взаимодействует с бензолом. При этом получаются галогенопроизводные. А вот реакция нитрирования проходит с использованием концентрированной азотной кислоты. Конечным итогом реакции является азотистое соединение:

С помощью нитрирования получают известное всем взрывчатое вещество - тротил, или тринитотолуол. Мало кто знает, что в основе тола лежит бензол. Многие другие нитросоединения на основе бензольного кольца также могут быть использованы как взрывчатые вещества

Электронная формула бензола

Стандартная формула бензольного кольца не совсем точно отражает внутренне строение бензола. Согласно ей, бензол должен обладать тремя локализованными п-связями, каждая из которых должна взаимодействовать с двумя атомами углерода. Но, как показывает опыт, бензол не обладает обычными двойными связями. Молекулярная формула бензола позволяет увидеть, что все связи в бензольном кольце равноценны. Каждая из них имеет длину около 0,140 нм, что является промежуточным значением между длиной стандартной простой связи (0,154 нм) и двойной этиленовой связи (0,134 нм). Структурная формула бензола, изображенная с чередованием связей, несовершенна. Более правдоподобна трехмерная модель бензола, которая выглядит так, как показано на картинке ниже.

Каждый из атомов бензольного кольца находится в состоянии sp 2 -гибридизации. Он затрачивает на образование сигма-связей по три валентных электрона. Эти электроны охватывают два соседних атома углевода и один атом водорода. При этом и электроны, и связи С-С, Н-Н находятся в одной плоскости.

Четвертый валентный электрон образует облако в форме объемной восьмерки, расположенное перпендикулярно плоскости бензольного кольца. Каждое такое электронное облако перекрывается над плоскостью бензольного кольца и непосредственно под ней с облаками двух соседних атомов углерода.

Плотность облаков п-электронов этого вещества равномерно распределена между всеми углеродными связями. Таким путем образуется единое кольцевое электронное облако. В общей химии такая структура получила название ароматического электронного секстета.

Равноценность внутренних связей бензола

Именно равноценностью всех граней шестиугольника объясняется выравненность ароматических связей, обуславливающих характерные химические и физические свойства, которыми обладает бензол. Формула равномерного распределения п-электронного облака и равноценность всех его внутренних связей показана ниже.

Как видно, вместо чередующихся одинарных и двойных черт внутреннюю структуру изображают в виде окружности.

Сущность внутренней структуры бензола дает ключ к пониманию внутреннего строения циклических углеводородов и расширяет возможности практического применения этих веществ.

В молекулах которых содержится бензольное кольцо, или ядро, - циклическая группа атомов углерода с особым характером связей.

Простейшим представителем аренов является бензол C 6 H 6 . Гомологический ряд бензола имеет общую формулу C n H 2n -6 .

Первую структурную формулу бензола предложил в 1865 г. немецкий химик Ф.А. Кекуле:

Атомы С в молекуле бензола образуют правильный плоский шестиугольник, хотя часто его рисуют вытянутым.

Приведенная формула правильно отражает равноценность шести атомов С, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, он не проявляет склонности к реакциям присоединения: не обесцвечивает бромную воду и раствор перманганата калия, т.е. ему не свойственны типичные для непредельных соединений качественные реакции.

В структурной формуле Кекуле - три одинарные и три двойные чередующиеся углерод-углеродные связи. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны. Это объясняется электронным строением его молекулы.

Каждый атом С в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами С и атомом Н тремя -связями. В результате образуется плоский шестиугольник, где все шесть атомов С и все -связи С-С и С-Н лежат в одной плоскости (угол между связями С-С равен 120 o). Третья p -орбиталь атома углерода не участвует в гибридизации. Она имеет форму гантели и ориентирована перпендикулярно плоскости бензольного кольца. Такие p -орбитали соседних атомов С перекрываются над и под плоскостью кольца. В результате шесть p -электронов (всех шести атомов С) образуют общее -электронное облако и единую химическую связь для всех атомов С.

Электронное облако обусловливает сокращение расстояния между атомами С. В молекуле бензола они одинаковы и равны. Значит, в молекуле бензола нет чередования простых и двойных связей, а существует особая связь - “полуторная” - промежуточная между простой и двойной, так называемая ароматическая связь. Чтобы показать равномерное распределение p-электронного облака в молекуле бензола, корректнее изображать ее в виде правильного шестиугольника с окружностью внутри (окружность символизирует равноценность связей между атомами С) .

Однако часто пользуются и формулой Кекуле с указанием двойных связей (II), помня, однако, о ее недостатках:

Физические свойства. Бензол - бесцветная, летучая, огнеопасная жидкость со своеобразным запахом. В воде практически нерастворим, но служит хорошим растворителем для многих органических веществ. Горит сильно коптящим пламенем (92,3 % массы приходится на углерод). Пары бензола с воздухом образуют взрывчатую смесь. Жидкий бензол и пары бензола ядовиты. Температура кипения бензола 80,1 °С. При охлаждении он легко застывает в белую кристаллическую массу с температурой плавления 5,5 °С.


Химические свойства. Ядро бензола обладает большой прочностью. Этим и объясняется склонность аренов к реакциям замещения. Они протекают легче, чем у предельных углеводородов.

Реакция замещения (ионный механизм).

1) Гидрирование . Бензол присоединяет водород при низкой температуре в присутствии катализатора - никеля или платины, образуя циклогексан:

2) Галогенирование. Бензол при ультрафиолетовом облучении присоединяет хлор, образуя гексахлорциклогексан (гексахлоран):

Реакции окисления .

1) Бензол очень устойчив к окислителям. В отличие от непредельных углеводородов он не обесцвечивает бромную воду и раствор KMnO 4 .

2) Бензол на воздухе горит коптящим пламенем:

2C 6 H 6 + 15O 2 12CO 2 + 6H 2 O.

Арены, таким образом, могут вступать как в реакции замещения, так и в реакции присоединения, однако условия этих превращений значительно отличаются от аналогичных превращений предельных и непредельных углеводородов. Эти реакции бензола внешне схожи с реакциями алканов и алкенов, но протекают по другим механизмам.