Болезни Военный билет Призыв

Комбинаторика лекции. Структура и методы. Размещения с повторениями

комбинаторика - рассматриваются взаимосвязано.

Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Например, сколькими способами могли быть распределены золотая, серебряная и бронзовая медали на Олимпийских играх в Сеуле по баскетболу; или сколькими различными способами можно разместить здания на площади ? Задачи такого типа называются комбинаторными .

С комбинаторными вычислениями приходится иметь дело представителям многих специальностей: ученому-химику при рассмотрении различных возможных типов связи атомов в молекулах, биологу - при изучении возможных последовательностей чередования аминокислот в белковых соединениях, диспетчеру - при составлении графика движения и т. д.

Комбинаторика возникла в XVI веке. В то время в жизни привилегированных слоев общества большое место занимали азартные игры (карты, кости). Были широко распространены лотереи. Возникали вопросы: сколькими способами можно выбросить данное число очков, бросая две или три кости, или сколькими способами можно получить двух королей? Эти и другие проблемы оказались движущей силой в развитии комбинаторики .

Теоретические исследования вопросов комбинаторики предприняли Паскаль и Ферма, Бернулли, Лейбниц и Эйлер и др.

Для инженерных специальностей университета комбинаторные задачи приходится решать в следующих случаях:

  1. при конструировании :
    • для оптимального размещения элементов системы;
    • для размещения микросхем на плате или элементов на кристалле;
    • при трассировке (выборе маршрута);
  2. синтезе схем и проектирования:
    • при решении вопроса, какой набор стандартных микросхем выбрать, чтобы реализовать разработанную схему устройства;
    • при разработке схемы на подсхемы для реализации различными блоками и т. д.;
  3. при контроле, выбирая-перебирая последовательность тестирующих сигналов;
  4. в организации систем, решая вопрос, каким выбрать оптимальный маршрут передачи информации по сети и т. п.

Общие правила комбинаторики

Рассмотрим некоторые конкретные задачи.

Задача. 1 . "Суеверные велосипедисты"

"Опять восьмерка" - воскликнул председатель клуба велосипедистов, - а все потому, что у меня билет № 008. Надо менять номера и проводить перерегистрацию".

Итак, сколько членов было в клубе, если известно, что использованы все трехзначные номера, не содержащие ни одной цифры 8?

00 01 02 .................... 09
10 11 12 .................... 19
20 21 22 .................... 29
30 31 32 .................... 39
40 . . .................... .
50 . . .................... .
60 . . .................... .
70 . . .................... .
80 . . .................... .
90 . . .................... .

Для решения этой задачи определим сначала, сколько однозначных номеров не содержит цифру 8? Это 0, 1, 2, 3, 4, 5, 6, 7, 9 - всего девять цифр, а теперь найдем все двузначные номера: их ( таблица ). За каждым двузначным номером можно поставить любую допустимую цифру, следовательно, . Значит в клубе было 729 велосипедистов.

В другом клубе велосипедисты были ещё суевернее и решили, что цифра 0 тоже похоже на вытянутое колесо и они отказались от этой цифры.

Сколько членов было в клубе, если номера билетов были трехзначными и не включали цифр 0 и 8? .

Задача 2 . "Секретный замок"

В сейфах применяют секретные замки, которые открываются, когда набран шифр . Этот шифр набирают с помощью одного или нескольких дисков. Пусть на диск нанесены 12 букв, а секретное слово- шифр состоит из 5 букв. Сколько неудачных попыток может быть сделано человеком, не знающим шифра?

Всего попыток , одна из которых удачная, следовательно неудачных попыток .

Задача 3 . " Команда космического корабля"

В случае, когда число возможных выборов на каждом шаге зависит от того какие элементы были выбраны ранее, удобно решение изображать в виде "дерева". Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на 1-м шаге. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать на 2-м шаге и т. д. В результате получается " дерево решений ".

Рассмотрим задачу о формировании команды космического корабля. Известно, что возникнет вопрос психологической совместимости. Предположим, надо составить команду из 3-х человек: командира, инженера и врача. На место командира есть четыре кандидата: , на место инженера три - , на место врача три - . Проведенная проверка показала, что совместим с ; совместим с ; совместим с и ; совместим с ; не совместим с ; не совместим с ; не совместим с .


Рис. 5.1.

Сколькими способами при этих условиях может быть составлена команда корабля? По результатам совместимости строится дерево решений ( рис. 5.1). Итак, всего 11 комбинаций, а без ограничения .

Упорядоченные множества. Перестановки

Множество называется упорядоченным , если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от до где - число элементов множества .

Всякое конечное множество можно сделать упорядоченным, если, например, переписать все элементы множества в некоторый список (.), а затем каждому элементу присвоить номер.

Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком.

Различные упорядоченные множества , которые отличаются лишь порядком элементов, называются перестановками этого множества .

Пример . Перестановки множества из 3-х элементов имеют вид .

Число перестановок из элементов !

Задача 1 . Сколькими способами можно разместить на плате 4 элемента? .

Задача 2 . Сколькими способами можно выстроить в линейку 10 человек (5 девушек и 5 юношей) с условием, чтобы девушки и юноши чередовались, первая - девушка? 5 девушек можно разместить ! способами, а 5 юношей аналогично !. Следовательно, всего способов .

Перестановка с повторением

Если рассматривать упорядоченные -элементные наборы из множества , которые состоят не только из различных элементов множества , но содержат некоторые повторяющиеся элементы, то получим перестановки с повторением .

Пусть - множество из элементов и -

В пособии излагаются основы комбинаторики и комбинаторных алгоритмов.
Предназначено для студентов I, II курсов математических специальностей.
Подготовлено на кафедре систем телекоммуникаций.

Введение в комбинаторику. Некоторые области применения задач комбинаторики.
Представителям самых различных специальностей и профессий приходится решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр, объектов. Вот некоторые примеры:
задача составления расписания;
в химии: рассмотрение всевозможных связей между атомами и молекулами;
решение транспортных задач;
планы реализации какой-либо продукции;
задачи составления и декодирования шифров.

Определение 1. Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из данных объектов, называется комбинаторикой.

Содержание
Лекция 1. Введение в комбинаторику. Некоторые области применения задач комбинаторики. Прямое произведение множеств. Правило суммы и правило произведения для конечных множеств. Принцип Дирихле. Размещения без повторений, размещения с повторениями, сочетания без повторений, сочетания с повторениями, перестановки. Мультимножество
Введение в комбинаторику. Некоторые области применения задач комбинаторики
Прямое произведение множеств
Правило суммы и правило произведения
Принцип Дирихле
Размещения, сочетания, перестановки
Мультимножество
Лекция 2. Основные тождества, связанные с числом сочетаний. Бином Ньютона. Следствия из теоремы о биноме Ньютона. Свойства биномиальных коэффициентов
Основные тождества, связанные с числом сочетаний
Бином Ньютона
Следствия из теоремы о биноме Ньютона
Свойства биномиальных коэффициентов
Лекция 3. Треугольник Паскаля. Некоторые свойства треугольника Паскаля. Свойства шестиугольника для треугольника Паскаля. Разбиение множеств. Числа Стирлинга второго рода
Треугольник Паскаля
Некоторые свойства треугольника Паскаля
Свойства шестиугольника
Разбиения множества
Числа Стирлинга второго рода
Лекция 4. Числа Белла. Числа Стирлинга первого рода. Беззнаковое число Стирлинга первого рода
Число Белла
Числа Стирлинга первого рода
Беззнаковое число Стирлинга первого рода
Лекция 5. Формула включений и исключений. Задача о беспорядках
Формула включений и исключений
Задача о беспорядках
Лекция 6. Число элементов, обладающих ровно к свойствами. Задача о встречах. Число элементов, обладающих не менее чем к свойствами
Число элементов, обладающих ровно к свойствами
Задача о встречах
Лекция 7. Полиномиальная теорема. Методы в комбинаторном анализе. Метод производящих функций. Задача о взвешивании
Полиномиальная теорема
Методы в комбинаторном анализе. Метод производящих функций
Задача о взвешивании
Лекция 8. Производящие функции. Виды производящих функций. Свойства производящих функций. Таблица соответствий производящих функций и последовательностей
Производящие функции
Виды производящих функций
Свойства производящих функций
Таблица соответствий производящих функций и последовательностей
Лекция 9. Дифференцирование и интегрирование производящих функций. Некоторые элементарные производящие функции. Бесконечно убывающая геометрическая прогрессия и последовательность из единиц
Дифференцирование и интегрирование производящих функций. Примеры использования
Некоторые элементарные производящие функции
Бесконечно убывающая геометрическая прогрессия и последовательность из единиц
Лекция 10. Примеры нахождения производящих функций для заданной последовательности. Примеры нахождения для последовательности производящих функций
Примеры нахождения производящих функций для заданной последовательности
Примеры нахождения для последовательности производящих функций
Лекция 11. Решение однородных рекуррентных соотношений. Общий метод решения рекуррентного соотношения
Решение однородных рекуррентных соотношений
Общий метод решения рекуррентных соотношений
Лекция 12. Последовательность Фибоначчи. Примеры использования производящих функций. Вычисление корня числа через производящие функции
Последовательность Фибоначчи
Примеры использования производящих функций
Вычисление корня числа через производящие функции
Лекция 13. Числа Каталана. Последовательность Каталана и производящая функция Каталана. Алгоритм расстановки скобок
Числа Каталана
Последовательность Каталана и производящая функция Каталана
Алгоритм расстановки скобок
Лекция 14. Генерирование комбинаторных объектов. Перестановки. Сочетания. Разбиение чисел. Подмножества множеств
Перестановки
Сочетания
Разбиения чисел
Подмножества множества
Литература
Учебно-методический комплекс по дисциплине «Комбинаторные алгоритмы»
1. Место дисциплины в структуре ООП
2. Цели и задачи дисциплины
3. Требования к результатам освоения дисциплины
4. Объем дисциплины и виды учебной работы
5. Содержание дисциплины
5.2. Лабораторный практикум
5.3. Практические занятия (семинары) не предусмотрены
6. Балльно-рейтинговая система оценки знаний, шкала оценок
7. Примерная тематика курсовых проектов (работ)
8. Учебно-методическое и информационное обеспечение дисциплины
I. Информация о преподавателях (ссылка на страницу)
II. Литература
III. Базы данных, информационно-справочные и поисковые системы
9. Материально-техническое обеспечение дисциплины
10. Методические рекомендации по организации изучения дисциплины.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по дискретной математике, Часть I, Комбинаторика, Зарипова Э.Р., Кокотчикова М.Г., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

В этой лекции даются основные начальные сведения из комбинаторики. Это служебный раздел математики, занимающийся исследованием различных комбинаций элементов всевозможных множеств. Формулы комбинаторики широко используются теории вероятностей, в теории вычислительных машин, в некоторых разделах экономике, в статистике и других прикладных дисциплинах.

1. Правила суммы и произведения.

Будем в дальнейшем оперировать только с множествами, содержащими конечное число элементов. На бесконечные множества все нижеприведённые правила и формулы не распространяются.

Теорема 13.1. Пусть даны непересекающиеся конечные множества . Тогда мощность объединения этих множеств равна сумме мощностей данных множеств:

Доказательство этой теоремы очевидно. Но для нас представляет интерес другая интерпретация этой теоремы, которую мы сформулируем для двух множеств.

Если некоторый элемент можно выбрать способами, а элемент - способами, причём любой способ выбора элемента отличается от любого способа выбора элемента , то выбор “ или ” можно сделать способами. Это правило называется правилом суммы .

Пусть даны непересекающиеся конечные множества . Обозначим число элементов в этих множествах (их мощности) . Рассмотрим декартово произведение этих множеств . Напомним, что элементами этого произведения будут векторы (кортежи) длины вида .

Теорема 13.2. Число элементов в декартовом произведении множеств равно произведению мощностей этих множеств:

Как и в предыдущем случае, сформулируем данную теорему упрощённым образом для двух множеств. Если элемент можно выбрать способами, а элемент - способами, причём любой способ выбора элемента отличается от любого способа выбора элемента , то выбор “ и ” (то есть, пары ) можно сделать способами. Это правило называется правилом произведения, или умножения .

Оба сформулированных правила верны для любого конечного числа конечных множеств, и, в соответствующей форме, называются обобщёнными .

Пример 1.

а) В некоторой средней школе имеется три пятых класса, в которых обучаются соответственно 28, 31 и 26 учащихся. Требуется одного из них выбрать для участия в совете школы. Сколькими способами можно сделать выбор?

По правилу суммы получаем .

б) В секции фигурного катания занимаются 14 мальчиков и 18 девочек. Сколькими различными способами из детей, занимающихся в секции, можно образовать спортивные пары.

По правилу произведения получаем .

2. Размещения.

Определение. размещением без повторений по элементов из . Число всех размещений без повторений по элементов из обозначается и равно .


Пример 2. Куплено различных 12 книг. На полке можно поставить в ряд ровно 6 книг. Сколькими различными способами можно это сделать?

Рассмотрим существенно другой случай, а именно когда элементы множества в векторах могут повторяться.

Определение. Любой вектор длины , составленный из элементов элементного множества , состоящего из элементов, в котором все элементы различны, называется размещением с повторениями по элементов из . Число всех размещений с повторениями по элементов из обозначается и равно .

Пример 3. Сколько различных комбинаций может получиться при одновременном бросании трёх игральных костей?

Каждая игральная кость представляет собой кубик, на гранях которого нанесено от одного до 6 очков. При каждом бросании мы будем получать наборы вида , где - количество очков, выпавших на соответствующей кости. Речь идёт о перестановках с повторениями по 3 элемента из 6. Получаем: .

Замечание. Очевидно, что размещения без повторений являются частным случаем размещений с повторениями.

3. Перестановки.

Определение. Любой вектор длины , составленный из элементов элементного множества , в котором все элементы различны, называется перестановкой без повторений из элементов. Число всех перестановок без повторений из элементов обозначается и равно .

Из определения и формулы видно, что перестановки без повторений есть частный случай размещений без повторений, при условии .

Пример 4. Сколькими различными способами можно расставить на полке 10 различных книг?

Здесь, в отличие от примера 2, значение имеет только порядок расставляемых книг. Поэтому речь идёт о перестановках из 10 элементов. Получаем: .

Рассмотрим случай, когда элементы множества повторяются по нескольку раз. Для определённости пусть 1-й элемент повторяется раз, 2-й элемент - раз и так далее. Тогда векторы длины , образованные из элементов данного множества называются перестановками из элементов с повторениями . Число таких перестановок обозначается и равно .

Положив в последней формуле , получим формулу для перестановок без повторений.

Пример 5. Сколько различных шестизначных чисел могут быть записано с помощью цифр 1, 2, 2, 2, 3, 3?

Имеется набор из шести цифр, в котором цифра 2 повторяется трижды и цифра 3 – дважды. Полученные числа будут представлять собой перестановки с повторениями из 6 элементов. Получаем: .

4. Сочетания. Бином Ньютона.

Прежде всего, отметим одно существенное отличие перестановок от размещений. Если в размещениях векторы различаются и по составу элементов, и по их расположению (порядку) в наборе, то в перестановках векторы различаются только по расположению элементов. Естественно рассмотреть случай, когда векторы, наоборот, будут различаться только по составу элементов.

Определение. Любые различные векторы длины , составленные из элементов элементного множества , различающиеся между собой по набору элементов, но не по их расположению в наборе, называются сочетаниями по элементов из .

Если все элементы, образующие сочетания, различны, то их называют сочетанием без повторений . Обозначение всех сочетаний без повторений . Формула для вычисления . Если некоторые (или все) элементы, образующие сочетания, могут повторяться, то их называют сочетаниями повторениями . Обозначение всех сочетаний без повторений . Формула для вычисления . Запоминать последнюю формулу нет необходимости.

Замечание 1. Сочетания являются частным случаем размещений. Разница между сочетаниями и размещениями из определения неочевидна, но на конкретных примерах её легко видеть. Так, например, векторы и являются различными размещениями, но обозначают одно и то же сочетание.

Замечание 2. Для сочетаний без повторений обязательно требование , причём в случае равенства получим естественный результат . Но для сочетаний с повторениями это требование необязательно, как будет видно из приведённого ниже примера.

Пример 6.

а) В отделе работают 10 сотрудников. Требуется отобрать трёх из них для того, чтобы направить в командировку. Сколькими способами можно это сделать?

Поскольку имеет значение только то, какие именно сотрудники отобраны, то речь идёт о сочетаниях без повторений по 3 элемента из 10. Получаем:

б) В цветочном магазине имеются в продаже 5 различных видов цветов. Покупателю требуется составить букет из 7 цветов. Сколькими способами можно это сделать?

Будем считать различными те букеты, которые отличаются друг от друга по подбору цветов. Поскольку цветы в букете могут повторяться, то речь идёт о сочетаниях с повторениями по 7 элементов из 5. Тогда получим .

Одним из наиболее известных примеров использования комбинаторных формул является так называемый бином Ньютона. В общем виде формула бинома (двучлена) Ньютона выглядит так:

С частными случаями применения этой формулы (для случаев и ) сталкиваются ещё в школе при изучении формул сокращённого умножения:

На практике для удобства применении бинома Ньютона применяют так называемый треугольник Паскаля, который содержит числовые коэффициенты полинома в правой части формулы:

…………………..

Назад, в начало конспекта.

ТЕМА: Основные понятия комбинаторики.

Ответьте на вопросы письменно: (20-25 мин)

    Что называют факториалом? (примеры вычисления)

    Комбинаторика-это…

    Что такое соединения? виды соединений?

    Решить задачу 1 и задачу 2 методом подбора!

Часто в математике нужно вычислить произведение натуральных чисел по порядку, начиная с 1. Например, 1*2*3*4*5*6*7 и т.д. Чтобы запись была короче используют знак «!»

Произведением всех натуральных чисел от 1 до n называется факториалом числа n и записывается n!(читается как эн факториал)

n!=1 2 3 ... (n−2) (n−1) n

Чему, к примеру, равны 2!, 3!, 4!, 5!, 6! ? Посчитайте в тетради!

2!= … 3!=… 4!=… 5!=… 6!=…

Комбинаторикой называют область математики, которая изучает вопросы о числе различных комбинаций (удовлетворяющих тем или иным условиям), которые можно составить из данных элементов.

Комбинаторика – раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составляемой по заданным правилам.

Группы, составленные из каких-либо элементов, называются соединениями .

Различают три вида соединений: размещения , перестановки и сочетания .

Задачи, в которых производится подсчет возможных различных соединений, составленных из конечного числа элементов по некоторому правилу, называются комбинаторными , а раздел математики, занимающийся их решением, - комбинаторикой .

Рассмотрим три основных вида соединений и формулы вычисления их количества. Для этого сначала рассмотрим 2 задачи, которые помогут нам сосредоточиться на сути новых понятий.

Задача 1. В некотором учреждении имеются две различные вакантные должности, на каждую из которых претендуют три сотрудника: A, B, C. Сколькими способами из этих трех кандидатов можно выбрать два лица на эти должности?

Задача 2. Для участия в соревнованиях требуется выбрать двоих спортсменов из трех кандидатов: A, B, C. Сколькими способами можно осуществить этот выбор?

1) Размещения.

Определение. Размещениями из m элементов по n элементов (n ≤ m) называются такие соединения, каждое из которых содержит n элементов, взятых из m данных разных элементов, и которые отличаются одно от другого либо самими элементами, либо порядком их расположения.

Число размещений из m элементов по n обозначают (от французского «arrangement» - «размещение») и вычисляют по формуле:

2) Перестановки.

Определение. Перестановкой из n элементов называют размещение из n элементов по n.

Число перестановок из n элементов обозначается и вычисляется по формуле:

3) Сочетания.

Определение.

Сочетаниями из m элементов по n элементов (n ≤ m) называются такие соединения, каждое из которых содержит n элементов, взятых из m данных элементов, и которые отличаются друг от друга по крайней мере одним элементом.

Число сочетаний из n элементов по m обозначают (от французского «combination» - «сочетание») и вычисляют по формуле:

Решение комбинаторных задач.

При решении комбинаторных задач важно научиться различать виды соединений.

Чтобы отличать задачи на подсчёт числа размещений от задач на подсчёт числа сочетаний, определим, важен или нет порядок в следующих выборках:

а) судья хоккейного матча и его помощник;

б) «Шесть человек останутся убирать класс!»

в) две серии для просмотра из многосерийного фильма.

Задача 1. Сколькими способами могут занять I, II, III места 8 участниц финального забега на дистанции 100 м?

Задача 2. Из 30 обучающихся группы надо выбрать старосту и помощника старосты. Сколькими способами это можно сделать?

Задача 3. Сколькими способами можно составить букет из трёх цветков, выбирая цветы из девяти имеющихся?

Задача 4. В группе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Домашнее задание Подготовка сообщений по темам: «Истории комбинаторики», «Комбинаторика и ее применение в реальной жизни».

Проверь себя!

1 .Определите вид соединений:

а) Соединения из n элементов, отличающиеся друг от друга только порядком расположения в них элементов, называются __________

б) Соединения из m элементов по n , отличающихся друг от друга только составом элементов, называются _______________

в) Соединения из m элементов по n , отличающихся друг от друга составом элементом и порядком их расположения, называются _________

2 .Восстановите соответствие типов соединений и формул для их подсчёта


А.сочетания


В. размещения


С. перестановки

3. Сколькими способами из класса, где учатся 24 ученика, можно выбрать: а)двух дежурных; б)старосту и помощника старосты?

4. «Проказница Мартышка, Осёл, Козёл да косолапый Мишка задумали сыграть квартет». Сколькими способами они могут выбрать каждый для себя по одному инструменту из 10 данных различных инструментов?

План:

1. Элементы комбинаторики.

2. Общие правила комбинаторики.

4. Применение графов (схем) при решении комбинаторных задач.

1. Комбинаторика и ее возникновение.

Комбинаторика - это область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

Комбинаторика возникла в XVI веке. В жизни привилегированных слоев тогдашнего общества большое место занимали азартные игры (карты, кости). Широко были распространены лотереи. Первоначально комбинаторные задачи касались в основном азартных игр: сколькими способами можно получить данное число очков, бросая 2 или 3 кости или сколькими способами можно получить 2-ух королей в некоторой карточной игре. Эти и другие проблемы азартных игр являлись движущей силой в развитии комбинаторики и далее в развитии теории вероятностей.

Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Тарталья. Он составил таблицы (числа способов выпадения k очков на r костях). Однако, он не учел, одна и та же сумма очков может выпасть различными способами, поэтому его таблицы содержали большое количество ошибок.

Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские математики Блез Паскаль и Ферма. Исходным пунктом их исследований были так же проблемы азартных игр.

Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г. Лейбница, Л. Эйлера. Однако, и в их работах основную роль играли приложения к различным играм.

Сегодня комбинаторные методы используются для решения транспортных задач, в частности задач по составлению расписаний, для составления планов производства и реализации продукции и т.д.

2. Общие правила комбинаторики.

Правило суммы: Если некоторый объект А может быть выбран m способами, а объект В- k способами, то объект «либо А, либо В» можно выбрать m +k способами.

Примеры:

1. Допустим, что в ящике находится n разноцветных шаров. Произвольным образом вынимается 1 шарик. Сколькими способами это можно сделать?

Ответ: n способами.

Распределим эти n шариков по двум ящикам: в первый- m шариков, во второй- k шариков. Произвольным образом из произвольно выбранного ящика вынимается 1 шарик. Сколькими способами это можно сделать?

Решение: Из первого ящика шарик можно вынуть m способами, из второго- k способами. Тогда всего способов m+k=n .

2. Морской семафор.

В морском семафоре каждой букве алфавита соответствует определенное положение относительно тела сигнальщика двух флажков. Сколько таких сигналов может быть?

Решение: Общее число складывается из положений, когда оба флажка расположены по разные стороны от тела сигнальщика и положений, когда они расположены по одну сторону от тела сигнальщика. При подсчете числа возможных положений применяется правило суммы.

Правило произведения: Если объект А можно выбрать m способами, а после каждого такого выбора другой объект В можно выбрать (независимо от выбора объекта А) k способами, то пары объектов «А и В» можно выбрать m *k способами.

Примеры:

1. Сколько двузначных чисел существует?

Решение: Число десятков может быть обозначено любой цифрой от 1 до 9. Число единиц может быть обозначено любой цифрой от 0 до 9. Если число десятков равно 1, то число единиц может быть любым (от 0 до 9). Таким образом, существует 10 двузначных чисел, с числом десятков- 1.Аналогично рассуждаем и для любого другого числа десятков. Тогда можно посчитать, что существует 9 *10 = 90 двузначных чисел.

2. Имеется 2 ящика. В одном лежит m разноцветных кубиков, а в другом- k разноцветных шариков. Сколькими способами можно выбрать пару «Кубик-шарик»?

Решение: Выбор шарика не зависит от выбора кубика, и наоборот. Поэтому, число способов, которыми можно выбрать данную пару равно m *k .

3. Генеральная совокупность без повторений и выборки без повторений.

Генеральная совокупность без повторений - это набор некоторого конечного числа различных элементов a 1 , a 2 , a 3 , ..., a n .

Пример: Набор из n разноцветных лоскутков.

Выборкой объема k (k n ) называется группа из m элементов данной генеральной совокупности.

Пример: Пестрая лента, сшитая из m разноцветных лоскутков, выбранных из данных n .

Размещениями из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга либо составом элементов, либо порядком их расположения.

- число размещений из n по k .

Число размещений из n по k можно определить следующим способом: первый объект выборки можно выбрать n способами, далее второй объект можно выбрать n -1 способом и т.д.


Преобразовав данную формулу, имеем:

Следует помнить, что 0!=1.

Примеры:

1. В первой группе класса А первенства по футболу участвует 17 команд. Разыгрываются медали: золото, серебро и бронза. Сколькими способами они могут быть разыграны?

Решение: Комбинации команд-победителей отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 17 по 3.

2. Научное общество состоит из 25-ти человек. Необходимо выбрать президента общества, вице-президента, ученого секретаря и казначея. Сколькими способами это можно сделать?

Решение: Комбинации руководящего состава общества отличаются друг от друга составом и порядком следования элементов, т.е. являются размещениями из 25 по 4.

Перестановками без повторений из n элементов называются размещения без повторений из n элементов по n , т.е. размещения отличаются друг от друга только порядком следования элементов.

Число перестановок.

Примеры:

1. Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что они должны состоять из различных цифр?

Решение: Имеем перестановки из 5 элементов. 2. Сколькими способами можно собрать 6 разноцветных лоскутков в пеструю ленту?
Решение:
Имеем перестановки из 6 элементов.

Сочетаниями без повторений из n элементов по k называются такие выборки, которые содержат по k элементов, выбранных из числа данных n элементов генеральной совокупности без повторений, и отличаются друг от друга только составом элементов.

- число сочетаний из n по k

Элементы каждого из сочетаний можно расставить способами. Тогда Примеры:

1. Если в полуфинале первенства по шахматам участвует 20 человек, а в финал выходят лишь трое, то сколькими способам и можно определить эту тройку?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки, вышедшие в финал, являются сочетаниями из 20 по 3.

2. Сколькими способами можно выбрать трех делегатов из десяти человек на конференцию?

Решение: В данном случае порядок, в котором располагается эта тройка, не существенен. Поэтому тройки делегатов являются сочетаниями из 10 по 3.

Конспект:




4.Применение графов (схем) при решении комбинаторных задач.

В случае, когда число возможных выборов на каждом шагу зависит от того, какие элементы были выбраны ранее, можно изобразить процесс составления комбинаций в виде «дерева». Сначала из одной точки проводят столько отрезков, сколько различных выборов можно сделать на первом шагу. Из конца каждого отрезка проводят столько отрезков, сколько можно сделать выборов на втором шагу, если на первом шагу был выбран данный элемент и т.д.

Задача:

При составлении команд космического корабля учитывается вопрос и психологической совместимости участников путешествия. Необходимо составить команду космического корабля из 3 человек: командира, инженера и врача. На место командира есть 4 кандидата: a 1 , a 2 , a 3 , a 4 .На место инженера- 3: b 1 , b 2 , b 3 . На место врача- 3: c 1 , c 2 , c 3 . Проведенная проверка показала, что командир a 1 психологически совместим с инженерами b 1 и b 3 и врачами c 1 и c 3 . Командир a 2 - с инженерами b 1 и b 2 . и всеми врачами. Командир a 3 - с инженерами b 1 и b 2 и врачами c 1 и c 3 . Командир a 4 -со всеми инженерами и врачом c 2 . Кроме того, инженер b 1 не совместим с врачом c 3 , b 2 - с врачом c 1 и b 3 - с врачом c 2 . Сколькими способами при этих условиях может быть составлена команда корабля?

Решение:

Составим соответствующее «дерево».






Ответ: 10 комбинаций.

Такое дерево является графом и применяется для решения комбинаторных задач.