Болезни Военный билет Призыв

Магнитное действие электрического тока используется в. Магнитное действие тока

Простейшие электрические и магнитные явления известны людям с очень давних времен.

По-видимому, уже за 600 лет до н. э. греки знали, что магнит притягивает к себе железо, а натертый янтарь – легкие предметы, вроде соломинок и т. п. Однако различие между электрическими и магнитными притяжениями было еще не ясно; те и другие считались явлениями одной природы.

Четкое разграничение этих явлений – заслуга английского врача и естествоиспытателя Уильяма Гильберта (1544-1603), который в 1600 г. выпустил в свет книгу под названием «О магните, магнитных телах и большом магните – Земле». С этой книги, собственно, и начинается подлинно научное изучение электрических и магнитных явлений. Гильберт описал в своей книге все свойства магнитов, которые в его эпоху были известны, а также изложил результаты собственных очень важных опытов. Он указал на ряд существенных различий между электрическими и магнитными притяжениями и ввел слово «электричество».

Хотя после Гильберта различие между электрическими и магнитными явлениями было уже для всех неоспоримо ясно, тем не менее ряд фактов указывал на то, что при всем своем различии эти явления каким-то образом тесно и неразрывно связаны друг с другом. Наиболее бросающимися в глаза были факты намагничивания железных предметов и перемагничивания магнитных стрелок под влиянием молний. В своей работе «Гром и молния» французский физик Доминик Франсуа Араго (1786-1853) описывает, например, такой случай. «В июле 1681 г. корабль «Королева», находившийся в сотне миль от берега, в открытом море, был поражен молнией, которая причинила значительные повреждения в мачтах, парусах и пр. Когда же наступила ночь, то по положению звезд выяснилось, что из трех компасов, имевшихся на корабле, два, вместо того чтобы указывать на север, стали указывать на юг, а третий стал указывать на запад». Араго описывает также случай, когда молния, ударившая в дом, сильно намагнитила в нем стальные ножи, вилки и другие предметы.

В начале XVIII века было уже установлено, что молния, по сути дела, представляет собой сильный электрический ток, идущий через воздух; поэтому факты вроде описанных выше могли подсказать мысль, что всякий электрический ток обладает какими-то магнитными свойствами. Однако обнаружить на опыте эти свойства тока, и изучить их удалось только в 1820 г. датскому физику Гансу Христиану Эрстеду (1777-1851).

Основной опыт Эрстеда изображен на рис. 199. Над неподвижным проводом 1, расположенным вдоль меридиана, т. е. в направлении север-юг, подвешена на тонкой нити магнитная стрелка 2 (рис. 199,а). Стрелка, как известно, устанавливается также приблизительно по линии север-юг, и поэтому она располагается примерно параллельно проводу. Но как только мы замкнем ключ и пустим ток по проводу 1, мы увидим, что магнитная стрелка поворачивается, стремясь установиться под прямым углом к нему, т. е. в плоскости, перпендикулярной к проводу (рис. 199,б). Этот фундаментальный опыт показывает, что в пространстве, окружающем проводник с током, действуют силы, вызывающие движение магнитной стрелки, т. е. силы, подобные тем, которые действуют вблизи естественных и искусственных магнитов. Такие силы мы будем называть магнитными силами, так же как мы называем силы, действующие на электрические заряды, электрическими.

Рис. 199. Опыт Эрстеда с магнитной стрелкой, обнаруживающий существование магнитного поля тока: 1 – провод, 2 – магнитная стрелка, подвешенная параллельно проводу, 3 – батарея гальванических элементов, 4 – реостат, 5 – ключ

В гл. II мы ввели понятие электрического поля для обозначения того особого состояния пространства, которое проявляется в действиях, электрических сил. Точно так же мы будем называть магнитным полем то состояние пространства, которое дает о себе знать действием магнитных сил. Таким образом, опыт Эрстеда доказывает, что в пространстве, окружающем электрический ток, возникают магнитные силы, т. е. создается магнитное поле.

Первый вопрос, который поставил перед собой Эрстед после того, как он сделал свое замечательное открытие, был таков: влияет ли вещество провода на создаваемое током магнитное поле? «Соединительный провод, – пишет Эрстед, – может состоять из нескольких проволок или металлических полос. Природа металла не меняет результата, разве только, пожалуй, в отношении величины.

С одинаковым результатом мы пользовались проволоками из платины, золота, серебра, латуни и железа, а также оловянными и свинцовыми полисами и ртутью».

Все свои опыты Эрстед проводил с металлами, т. е. с проводниками, в которых проводимость, как мы теперь знаем, имеет электронный характер. Нетрудно, однако, осуществить опыт Эрстеда, заменив металлический провод трубкой с электролитом или трубкой, в которой происходит разряд в газе. Такие опыты мы уже описали в § 40 (рис. 73) и видели, что хотя в этих случаях электрический ток обусловлен движением положительных и отрицательных ионов, но действие его на магнитную стрелку то же, что и в случае тока в металлическом проводнике. Какова бы ни была природа проводника, по которому течет ток, вокруг проводника всегда создается магнитное поле, под влиянием которого стрелка поворачивается, стремясь стать перпендикулярно к направлению тока.

Таким образом, мы можем утверждать: вокруг всякого тока возникает магнитное поле. Об этом важнейшем свойстве электрического тока мы уже упоминали (§ 40), когда говорили подробнее о других его действиях – тепловом и химическом.

Из трех свойств или проявлений электрического тока наиболее характерным является именно создание магнитного поля. Химические действия тока в одних проводниках – электролитах – имеют место, в других – металлах – отсутствуют. Выделяемое током тепло может быть при одном и том же токе больше или меньше в зависимости от сопротивления проводника. В сверхпроводниках возможно даже прохождение тока без выделения тепла (§ 49). Но магнитное поле – неотделимый спутник всякого электрического тока. Оно не зависит ни от каких специальных свойств того или иного проводника и определяется лишь силой и направлением тока. Большинство технических применений электричества также связано с наличием магнитного поля тока.

Марио Льоцци

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел "электромагнитные весы", получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.

Марио Льоцци

ОПЫТ ЭРСТЕДА

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались доказать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam» датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь, долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось, уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнить», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрёrimentale» (2-е изд., II, Париж, 1821, стр. 122). В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари (1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

ГАЛЬВАНОМЕТР

Упомянутый уже нами опыт Араго, объяснявшийся многими физиками того времени тем, что провод, по которому проходит ток, намагничивается, был сразу правильно понят Ампером, тотчас же предсказавшим, а затем вскоре и подтвердившим экспериментально, что стальной брусок, помещенный внутри спирали, по которой проходит ток, приобретает постоянную намагниченность. Таким образом, был найден новый метод намагничивания, гораздо более эффективный, простой и удобный, нежели прежние. Но самое главное, этим был дан толчок для создания простого, но очень ценного приспособления - электромагнита, который используется в многочисленных научных и технических приборах. Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783- 1850); этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок. Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785-1838) и американец Джозеф Генри (1797-1878).

За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается. Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле.

Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века. Здесь мы укажем лишь на описанное в 1823 г. «колесо Барлоу», потому что оно представляет собой разновидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса, к его периферии и далее через ртуть течет ток, колесо вращается.

Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779-1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка. Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеровский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком.

Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал «астатический аппарат», как он его назвал, подобный тому, который применял Вассалли Эанди, а еще раньше, в 1797 г., Джон Тремери. Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току.

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел «электромагнитные весы», получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.

Билеты по физике

Сила тока, напряжение, сопротивление.

1. Создавать электрическое поле, в котором будут двигаться заряженные частицы, то есть возникнет ток.

2. Электрофорная машина, термоэлемент, гальванический элемент или аккумулятор.

3. А) при работе гальванического элемента в стандартных условиях происходит процессы превращения химической энергии реагентов в электрическую.

Б) Преобразование тепла в электрическую.

В) Происходит превращение механической энергии при трении в электрическую.

Г)Внутренняя энергия, выделяющаяся при химических реакциях, превращается в электрическую.В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой – отрицательно.

4. Основное различие состоит в том, что Аккумулятор можно заряжать вновь. Причем количество циклов заряда/разряда может достигать нескольких тысяч раз. Гальванический элемент имеет только один цикл разряда.

5. Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещённых в раствор серной кислоты.

6. При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный – с отрицательным полюсом.

7. Любой гальванический элементсостоитиз анода, катода и электролита твердого, жидкого или гелеобразного.

8. Источник тока, соединительные провода, ключ, потребитель.

10.Тепловое действие тока.

Электрический ток вызывает разогревание металлических проводников (вплоть до свечения).

Химическое действие тока.

При прохождении электрического тока через электролит возможно выделение веществ,
содержащихся в растворе, на электродах..
- наблюдается в жидких проводниках.

Магнитное действие тока.

Проводник с током приобретает магнитные свойства.
- наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

11.______________________________________________________________________________________________________________________________________________________________________________________________________________________________

12.За направление тока условно приняли то направление, по которому движутся в проводнике положительные заряды, т.е. направление от положительного полюса источника тока к отрицательному.

13.Электрический ток – это упорядоченное движение заряженных частиц.

14.Для создания эл. тока необходимо эл. поле, которое распространяется со скоростью света от источника тока при замыкании цепи.

15.________________________________________________________________________ В металлах – электроны, в электролитах – ионы, в газах – молекулы.

16.сила тока – это эл. Заряд проходящий через поперечное сечение проводника за 1 сек.

17. - сила тока (А)

18. ;

19. q(-e)= -1.6*10^-19 Кулон

20.Силу тока в цепи измеряют прибором, называемым амперметром .

22.Напряжение это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U. Единица напряжения названо вольтом (В) .

23. У амперметра очень малое внутреннее сопротивление поэтому при параллельном его включении в цепь весь ток "ринется" через него и он сгорит.

24. Вольтметр имеет большое внутреннее сопротивление, поэтому он ток почти не проведет. Даже если и проведет через себя ток, то сильно ослабляет его.

25.Сопротивление проводника зависит от его длины, от удельного сопротивления и от площади его поперечного сечения.

26.За единицу сопротивления принимают 1 ом - сопротивление такого проводника в котором при напряжении на концах 1 вольт сила тока равна 1 амперу.

27. ;
где R-сопротивление, p-удельное сопротивление проводника, l- длина проводника.

28. Это означает что сопротивление проводника () прямо пропорционально длине проводника (м) , обратно пропорциональна площади его поперечного и зависит от вещ-ва проводника.

30. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве.

34.Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

35.

37.При последовательном соединении сила тока в любых участках цепи одна и та же, т.е.

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

38.Напряжение на участке цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Сила тока в неразветвлённой части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Общее сопротивление цепи при параллельном соединении проводников определяется по формуле:

39.Потому что если сгорит одна из проводок то все остальные будут продолжать работать.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

Есть ли в цепи электрический ток, можно определить по различным его проявлениям, которые называют действиями электрического тока. Электрический ток может вызывать тепловые, световые, и химические явления. Также электрический ток всегда вызывает магнитное явление.

Тепловое действие электрического тока заключается в нагревании проводника при наличии в нем тока. При этом если проводник нагревается до достаточно высокой температуры, он может начать светиться. То есть проявится световое действие тока как следствие теплового.

Например, если через железную проволоку пропустить электрический ток, то она нагреется. Подобное тепловое действие тока в металлах используется в электрических чайниках и некоторых других бытовых приборах.

Вольфрамовая нить в лампах накаливания при сильном нагревании начинает светится. В данном случае находит применение световое действие электрического тока. В энергосберегающих лампах светятся газ при прохождении через него электрического тока.

Химическое действие электрического тока проявляется в следующем. Берут раствор определенной соли, щелочи или кислоты. В него погружают два электрода, при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе (обычно положительно заряженные ионы металлов) начинают откладываться на электроде с противоположным зарядом. Этот явление называется электролизом.

Например, в растворе медного купороса (CuSO 4) к отрицательно заряженному электроду двигаются ионы меди, имеющие положительный заряд (Cu 2+). Получив от электрода недостающие ионы, они превращаются в нейтральные атомы меди и оседают на электроде. При этом группы гидроксильные группы воды (-OH) отдают свои электроны положительно заряженному электроду. В результате из раствора выделяется кислород. В растворе же остаются положительно заряженные ионы водорода (H +) и отрицательно заряженные сульфатные группы (SO 4 2-).

Таким образом, в результате электролиза происходит химическая реакция.

Химическое действие электрического тока используется в промышленности. Электролиз позволяет получать некоторые металлы в чистом виде. Также с помощью него покрывают тонким слоем определенного металла (никеля, хрома) поверхности.

Магнитное действие электрического тока заключается в том, что проводник, по которому течет ток, действует на магнит или намагничивает железо. Например, если расположить проводник параллельно магнитной стрелке компаса, то стрелка повернется на 90°. Если обмотать небольшой железный предмет проводником, то предмет становится магнитом при прохождении электрического тока через проводник.

Магнитное действие тока используется в измерительных приборах электричества.