Болезни Военный билет Призыв

Новые стабильные элементы. О сверхтяжелых элементах. Почему так часто реакции синтеза сверхтяжелых элементов оказываются неудачными, если по теоретическим расчетам они должны работать

Сверхтяжелые элементы на островке устойчивости

Теоретическое и экспериментальное изучение устойчивости ядра дало советским физикам повод для пересмотра применявшихся до сих пор методов получения тяжелых трансуранов . В Дубне решили пойти новыми путями и взять в качестве мишени свинец и висмут .

Ядро, как и атом в целом, имеет оболочечное строение . Особой устойчивостью отличаются атомные ядра, содержащие 2-8-20- 28-50-82-114-126-164 протонов (то есть ядра атомов с таким порядковым номером) и 2-8-20-28-50-82-126-184-196- 228-272-318 нейтронов, вследствие законченного строения их оболочек. Только недавно удалось подтвердить эти воззрения расчетами с помощью ЭВМ.

Такая необычная устойчивость бросилась в глаза, прежде всего, при изучении распространенности некоторых элементов в космосе. Изотопы , обладающие этими ядерными числами, называют магическими. Изотоп висмута 209 Bi, имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся также изотопы кислорода, кальция, олова . Дважды магическими являются: для гелия - изотоп 4 Не (2 протона, 2 нейтрона), для кальция - 48 Са (20 протонов, 28 нейтронов), для свинца - 208 Pb (82 протона, 126 нейтронов). Они отличаются совершенно особой прочностью ядра.

Используя источники ионов нового типа и более мощные ускорители тяжелых ионов - в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флёрова и Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться? В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке 50 случаев, указывающих на образование 106-го элемента , который, однако, распадается уже через 10 -2 с. Эти 50 атомных ядер образовались по схеме:

208 Pb + 51 Cr = 259 X

Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли сообщили, что они синтезировали изотоп нового, 106 -го, элемента с массовым числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате Super-HILAC.

Какое имя будет носить новый элемент? Откинув прежние разногласия, обе группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А Гиорсо дополнил, что решено воздержаться от всяких предложений о наименовании 106-го элемента вплоть до прояснения ситуации.

К концу 1976 года дубнинская лаборатория ядерных реакций закончила серию опытов по синтезу 107-го элемента; в качестве исходного вещества дубнинским "алхимикам" послужил "магический " висмут-209. При обстреле ионами хрома с энергией 290 МэВ он превращался в изотоп 107 -го элемента:

209 Bi + 54 Cr = 261 X + 2n

107-й элемент самопроизвольно распадается с периодом полураспада 0,002 с и, кроме того, излучает альфа-частицы.

Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002 с заставили насторожиться. Ведь они оказались на несколько порядков больше, чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно влияла близость последующего магического числа протонов и нейтронов - 114, повышающая устойчивость?
Если это так, то была надежда получить и долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с. Это позволило бы изучить химические свойства 107-го элемента - экарения .

Самый долгоживущий изотоп первого трансурана, элемента 93 - нептуний-237,- обладает периодом полураспада 2 100 000 лет; самый устойчивый изотоп 100-го элемента - фермий-257- только 97 дней. Начиная с 104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому, казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для чего же нужны дальнейшие исследования?

Альберт Гиорсо, ведущий специалист США по трансуранам, высказался однажды в этой связи: "Причиной для продолжения поисков дальнейших элементов является просто-напросто удовлетворение человеческого любопытства - а что же происходит за следующим поворотом улицы? " Однако это, конечно, не просто научное любопытство. Гиорсо давал все же понять, как важно продолжение такого фундаментального исследования.

В 60-е годы теория магических ядерных чисел приобретала все большее значение. В "море неустойчивости" ученые отчаянно пытались найти спасительный "островок относительной устойчивости ", на который могла бы твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще не открыт, "координаты" его известны: элемент 114, экасвинец , считается центром большой области устойчивости. Изотоп-298 элемента 114 уже давно является особым предметом научных споров, ибо, имея 114 протонов и 184 нейтрона, он представляет собой одно из тех дважды магических атомных ядер, которым предсказывают длительное существование. Однако что же означает длительное существование?

Предварительные расчеты показывают: период полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по отношению к самопроизвольному делению - от 10 8 до 10 16 лет. Такие колебания, как указывают физики, объясняются приближенностью "компьютерной химии". Весьма обнадеживающие значения периодов полураспада предсказывают для следующего островка устойчивости - элемента 164, двисвинца . Изотоп 164-го элемента с массовым числом 482 - также дважды магический: его ядро образуют 164 протона и 318 нейтронов.

Науку интересуют и просто магические сверхтяжелые элементы , как, например, изотоп-294 элемента 110 или изотоп-310 элемента 126, содержащие по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются все новые данные и сейчас уже определенно известно, какими свойствами - ядерными, кристаллографическими и химическими - должны обладать эти сверхтяжелые элементы . В специальной литературе накапливаются точные данные для элементов, которые люди, быть может, откроют лет через 50.

В настоящее время атомщики путешествуют по морю неустойчивости в ожидании открытий. За их спинами осталась твердая земля: полуостров с естественными радиоактивными элементами, отмеченный возвышенностями тория и урана, и далеко простирающаяся твердая земля со всеми прочими элементами и вершинами свинца, олова и кальция .
Отважные мореплаватели уже давно находятся в открытом море. На неожиданном месте они нашли отмель: открытые 106 и 107-й элементы устойчивее, чем ожидалось.

В последние годы мы долго плыли по морю неустойчивости, рассуждает Г. Н. Флёров, и вдруг, в последний момент, почувствовали землю под ногами. Случайная подводная скала? Либо песчаная отмель долгожданного островка устойчивости? Если правильно второе, то у нас есть реальная возможность создать новую периодическую систему из устойчивых сверхтяжелых элементов , обладающих поразительными свойствами.

После того, как стала известна гипотеза об устойчивых элементах вблизи порядковых номеров 114, 126, 164, исследователи всего мира набросились на эти "сверхтяжелые " атомы. Некоторые из них, с предположительно большими периодами полураспада, надеялись обнаружить на Земле или в Космосе, по крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы эти элементы так же существовали, как и все прочие.

Следы сверхтяжелых элементов - что следует под этим понимать? В результате своей способности самопроизвольно делиться на два ядерных осколка с большой массой и энергией эти трансураны должны были бы оставить в находящейся по соседству материи отчетливые следы разрушения.
Подобные следы можно увидеть в минералах под микроскопом после их травления. С помощью такого метода следов разрушения можно в настоящее время проследить существование давно погибших элементов. Из ширины оставленных следов можно оценить и порядковый номер элемента - ширина трека пропорциональна квадрату заряда ядра.
"Живущие" еще сверхтяжелые элементы надеются также выявить, исходя из того, что они многократно испускают нейтроны. При самопроизвольном процессе деления эти элементы испускают до 10 нейтронов.

Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин океана, а также в водах после таяния ледников полярных морей. До сих пор безрезультатно. Г. Н. Флёров с сотрудниками исследовал свинцовые стекла древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового хрусталя XVIII века.
Сначала несколько следов самопроизвольного деления указали на экасвинец - 114-й элемент. Однако, когда дубнинские ученые повторили свои измерения с высокочувствительным детектором нейтронов в самом глубоком соляном руднике Советского Союза, то положительного результата не получили. На такую глубину не могло проникнуть космическое излучение, которое, по-видимому, вызвало наблюдавшийся эффект.

В 1977 году профессор Флёров предположил, что он наконец обнаружил "сигналы нового трансурана " при исследовании глубинных термальных вод полуострова Челекен в Каспийском море.
Однако число зарегистрированных случаев было слишком мало для однозначного отнесения. Через год группа Флёрова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные получены при работе с ионообменником, заполненным неизвестным трансураном из термальных вод. Флёров оценил период полураспада присутствовавшего элемента, который он еще не смог выделить, миллиардами лет.

Другие исследователи пошли иными путями. Профессор Фаулер и его сотрудники из Бристольского университета предприняли эксперименты с аэростатами на большой высоте. С помощью детекторов малых количеств ядер были выявлены многочисленные участки с зарядами ядер, превышающими 92. Английские исследователи считали, что один из следов указывает даже на элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет порядковый номер 96 (кюрий ).

Как же попадают эти сверхтяжелые частички в стратосферу земного шара? До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы должны возникать при взрывах сверхновых звезд либо при других астрофизических процессах и достигать Земли в виде космического излучения или пыли - но только через 1000 - 1 000 000 лет. Эти космические осадки в настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.

Значит, сверхтяжелые элементы могут находиться в космическом излучении? Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент "Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории, облетавшей Землю, установили детекторы, поглощающие тяжелые частички из космоса; обнаружены были лишь треки известных элементов .
Лунная пыль, доставленная на Землю после первой посадки на Луну в 1969 году, не менее тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли, что их можно приписать элементам 110 - 119.

Аналогичные результаты дали исследования аномального изотопного состава благородного газа ксенона, содержащегося в различных образцах метеоритов. Физики высказали мнение, что этот эффект можно объяснить лишь существованием сверхтяжелых элементов.
Советские ученые в Дубне, которые проанализировали 20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.
Однако после того, как было установлено, что "природный" плутоний-244 , некогда являвшийся составной частью нашей Солнечной системы, оставляет совершенно сходные следы, интерпретацию стали проводить осторожнее.

Полтора века назад, когда Дмитрий Иванович Менделеев открыл Периодический закон, было известно только 63 элемента. Упорядоченные в таблицу, они легко раскладывались по периодам, каждый из которых открывается активными щелочными металлами и заканчивается (как выяснилось позже) инертными благородными газами. С тех пор таблица Менделеева увеличилась почти вдвое, и с каждым расширением Периодический закон подтверждался снова и снова. Рубидий так же напоминает калий и натрий, как ксенон — криптон и аргон, ниже углерода располагается во многом похожий на него кремний… Сегодня известно, что эти свойства определяются числом электронов, вращающихся вокруг атомного ядра.

Они заполняют «энергетические оболочки» атома одну за другой, как зрители, по порядку занимающие сиденья на своих рядах в театре: тот, кто оказался последним, определит химические свойства всего элемента. Атом с полностью заполненной последней оболочкой (как гелий с его двумя электронами) будет инертным; элемент с одним «лишним» электроном на ней (как натрий) станет активно образовывать химические связи. Число отрицательно заряженных электронов на орбитах связано с количеством положительных протонов в ядре атома, и именно числом протонов отличаются разные элементы.


Зато нейтронов в ядре одного и того же элемента может быть разное количество, заряда у них нет, и на химические свойства они не влияют. Но в зависимости от числа нейтронов водород может оказаться тяжелее гелия, а масса лития — достигать семи вместо «классических» шести атомных единиц. И если список известных элементов сегодня приближается к отметке в 120, то число ядер (нуклидов) перевалило за 3000. Большинство из них нестабильны и спустя некоторое время распадаются, выбрасывая «лишние» частицы в ходе радиоактивного распада. Еще больше нуклидов неспособны существовать в принципе, моментально разваливаясь на куски. Так материк стабильных ядер окружает целое море неустойчивых сочетаний нейтронов и протонов.

Море Неустойчивости

Судьба ядра зависит от числа нейтронов и протонов в нем. Согласно оболочечной теории строения ядра, выдвинутой еще в 1950-х, частицы в нем распределяются по своим энергетическим уровням так же, как электроны, которые вращаются вокруг ядра. Некоторые количества протонов и нейтронов дают особо устойчивые конфигурации с полностью заполненными протонными или нейтронными оболочками — по 2, 8, 20, 28, 50, 82, а для нейтронов еще и 126 частиц. Эти числа называются «магическими», а самые стабильные ядра содержат «дважды магические» количества частиц — например, 82 протона и 126 нейтронов у свинца или по два — в обычном атоме гелия, второго по распространенности элемента во Вселенной.

Последовательный «Химический материк» элементов, которые можно найти на Земле, заканчивается свинцом. За ним следует череда ядер, которые существуют намного меньше возраста нашей планеты. В ее недрах они могут сохраниться разве что в малых количествах, как уран и торий, или вовсе — в следовых, как плутоний. Из породы извлечь его невозможно, и плутоний нарабатывают искусственно, в реакторах, бомбардируя нейтронами урановую мишень. Вообще современные физики обращаются с ядрами атомов, как с деталями конструктора, заставляя их присоединять отдельные нейтроны, протоны или целые ядра. Это и позволяет получать все более и более тяжелые нуклиды, пересекая пролив «моря Неустойчивости».


Цель путешествия подсказана той же оболочечной теорией строения ядра. Это — область сверхтяжелых элементов с подходящим (и очень большим) числом нейтронов и протонов, легендарный «остров Стабильности». Расчеты говорят, что некоторые из местных «жителей» могут существовать уже не доли микросекунд, а на много порядков дольше. «В определенном приближении их можно рассматривать как капельки воды, — объяснил нам академик РАН Юрий Оганесян. — Вплоть до свинца следуют ядра сферические и устойчивые. За ними следует полуостров умеренно стабильных ядер — таких как торий или уран, — который вытягивается отмелью сильно деформированных ядер и обрывается в нестабильное море… Но еще дальше, за проливом, может находиться новая область сферических ядер, сверхтяжелых и устойчивых элементов с номерами 114, 116 и далее». Время жизни некоторых элементов на «острове Стабильности» может длиться уже годы, и то и миллионы лет.


Остров Стабильности

Трансурановые элементы с их деформированными ядрами удается создать, бомбардируя нейтронами мишени из урана, тория или плутония. Обстреливая их разогнанными в ускорителе легкими ионами, можно последовательно получить ряд элементов еще тяжелее — но в какой-то момент наступит предел. «Если рассматривать разные реакции — присоединение нейтронов, присоединение ионов — как разные «корабли», то все они не помогут нам доплыть до «острова Стабильности», — продолжает Юрий Оганесян. — Для этого потребуется «судно» и побольше, и другой конструкции. В качестве мишени придется использовать нейтроноизбыточные тяжелые ядра искусственных элементов тяжелее урана, а бомбардировать их потребуется большими, тяжелыми изотопами, содержащими много нейтронов, такими как кальций-48».

Работа над таким «кораблем» оказалась по силам лишь большой международной команде ученых. Инженеры и физики комбината «Электрохимприбор» выделили из природного кальция исключительно редкий 48-й изотоп, содержащийся здесь в количестве менее 0,2%. Мишени из урана, плутония, америция, кюрия, калифорния приготовили в Димитроградском НИИ Атомных реакторов, в Ливерморской национальной лаборатории и в Национальной лаборатории в Оук-Ридже в США. Ну а ключевые эксперименты по синтезу новых элементов были проведены академиком Оганесяном в Объединенном институте ядерной физики (ОИЯИ), в Лаборатории ядерных реакций имени Флёрова. «Наш ускоритель в Дубне работал по 6−7 тысяч часов в год, разгоняя ионы кальция-48 примерно до 0,1 скорости света, — объясняет ученый. — Эта энергия необходима, чтобы некоторые из них, ударяясь в мишень, преодолели силы кулоновского отталкивания и слились с ядрами ее атомов. Например, 92-й элемент, уран, даст ядро нового элемента с номером 112, плутоний — 114, а калифорний — 118».



«Поиск новых сверхтяжёлых элементов позволяет ответить на один из важнейших вопросов науки: где лежит граница нашего материального мира

«Такие ядра должны быть уже достаточно стабильны и распадаться будут не сразу, а станут последовательно выбрасывать альфа-частицы, ядра гелия. А уж их мы прекрасно умеем регистрировать», — продолжает Оганесян. Сверхтяжелое ядро выбросит альфа-частицу, превратившись в элемент на два атомных номера легче. В свой черед и дочернее ядро потеряет альфа-частицу и превратится во «внучатое» — еще на четыре легче, и так далее, пока процесс последовательного альфа-распада не закончится случайным появлением и моментальным спонтанным делением, гибелью неустойчивого ядра в «море Нестабильности». По этой «генеалогии» альфа-частиц Оганесян и его коллеги проследили всю историю превращения полученных в ускорителе нуклидов и очертили ближний берег «острова Стабильности». После полувекового плавания на него высадились первые люди.

Новая земля

Уже за первое десятилетие XXI века в реакциях слияния актинидов с ускоренными ионами кальция-48 были синтезированы атомы элементов с номерами от 113 и вплоть до 118-го, лежащего на дальнем от «материка» берегу «острова Стабильности». Время их существования уже на порядки больше, чем у соседей: например, элемент 114 сохраняется не миллисекунды, как 110-й, а десятки и даже сотни секунд. «Такие вещества уже доступны для химии, — говорит академик Оганесян. — А значит, мы возвращаемся к самому началу путешествия и теперь можем проверить, соблюдается ли для них Периодический закон Менделеева. Будет ли 112-й элемент аналогом ртути и кадмия, а 114-й — аналогом олова и свинца»? Первые же химические эксперименты с изотопом 112-го элемента (коперниция) показали: видимо, будут. Ядра коперниция, вылетающие из мишени при бомбардировке, ученые направляли в длинную трубку, включающую 36 парных детекторов, частично покрытых золотом. Ртуть легко образует устойчивые интерметаллические соединения с золотом (это свойство используется в древней технике позолоты). Поэтому ртуть и близкие к ней атомы должны оседать на золотой поверхности первых же детекторов, а радон и атомы, близкие к благородным газам, могут добираться до конца трубки. Послушно следуя Периодическому закону, коперниций проявил себя родственником ртути. Но если ртуть стала первым известным жидким металлом, то коперниций, возможно, окажется первым газообразным: температура его кипения ниже комнатной. По словам Юрия Оганесяна, это только блеклое начало, и сверхтяжелые элементы с «острова Стабильности» откроют нам новую, яркую и необычную область химии.


Но пока мы задержались у подножия острова стабильных элементов. Ожидается, что 120-й и следующие за ним ядра могут оказаться по‑настоящему устойчивыми и будут существовать уже долгие годы, а то и миллионы лет, образуя стабильные соединения. Однако получить их с помощью того же кальция-48 уже невозможно: не существует достаточно долгоживущих элементов, которые могли бы, соединившись с этими ионами, дать ядра нужной массы. Попытки заменить ионы кальция-48 чем-нибудь более тяжелым пока тоже не принесли результата. Поэтому для новых поисков ученые-мореплаватели подняли голову и присмотрелись к небесам.

Космос и фабрика

Первоначальный состав нашего мира разнообразием не отличался: в Большом взрыве появился лишь водород с небольшими примесями гелия — легчайшие из атомов. Все прочие уважаемые участники таблицы Менделеева появились в реакциях слияния ядер, в недрах звезд и при взрывах сверхновых. Неустойчивые нуклиды быстро распадались, устойчивые, как кислород-16 или железо-54, накапливались. Неудивительно, что тяжелых нестабильных элементов, таких как америций или коперниций, в природе обнаружить не удается.


Но если где-то в самом деле есть «остров Стабильности», то хотя бы в небольших количествах сверхтяжелые элементы должны встречаться на просторах Вселенной, и некоторые ученые ведут их поиски среди частиц космических лучей. По словам академика Оганесяна, этот подход все же не так надежен, как старая добрая бомбардировка. «По-настоящему долгоживущие ядра на «вершине» острова Стабильности содержат необычно большие количества нейтронов, — рассказывает ученый. — Поэтому нейтроноизбыточный кальций-48 оказался таким удачным ядром для бомбардировки нейтроноизбыточных элементов мишени. Однако изотопы тяжелее кальция-48 нестабильны, и чрезвычайно малы шансы на то, что они в естественных условиях смогут слиться с образованием сверхстабильных ядер».

Поэтому лаборатория в подмосковной Дубне обратилась к использованию более тяжелых ядер, пусть и не столь удачных, как кальций, для обстреливания искусственных элементов мишеней. «Мы сейчас заняты созданием так называемой Фабрики сверхтяжелых элементов, — говорит академик Оганесян. — В ней те же мишени будут бомбардироваться ядрами титана или хрома. Они содержат на два и четыре протона больше, чем кальций, а значит — могут дать нам элементы с массами 120 и больше. Интересно будет посмотреть, окажутся ли они еще на «острове» или же откроют новый пролив за ним».

На исходе второго тысячелетия академик Виталий Лазаревич Гинзбург составил список из тридцати проблем физики и астрофизики, которые он считал наиболее важными и интересными (см. «Наука и жизнь» № 11, 1999 г.). В этом списке под № 13 указана задача отыскания сверхтяжёлых элементов. Тогда, 12 лет назад, академик с огорчением отметил, что «существование в космических лучах долгоживущих (речь идёт о миллионах лет) трансурановых ядер пока подтверждено не было». Сегодня следы таких ядер обнаружены. Это даёт надежду открыть наконец остров Стабильности сверхтяжёлых ядер, существование которого предсказал когда-то физик-ядерщик Георгий Николаевич Флёров.

Вопрос, существуют ли элементы тяжелее урана-92 (238 U - его стабильный изотоп), долгое время оставался открытым, так как в природе они не наблюдались. Считалось, что стабильных элементов с атомным номером больше 180 нет: мощный положительный заряд ядра разрушит внутренние уровни электронов тяжёлого атома. Однако довольно скоро выяснилось, что стабильность элемента определяется устойчивостью его ядра, а не оболочки. Стабильны ядра с чётным числом протонов Z и нейтронов N, среди которых особенно выделяются ядра с так называемым магическим числом протонов или нейтронов - 2, 8, 20, 28, 50, 82, 126 - это, например, олово, свинец. И наиболее стабильны «дважды магические ядра», у которых число и нейтронов, и протонов - магическое, скажем, гелий и кальций. Таков изотоп свинца 208 Pb: у него Z = 82, N = 126. Устойчивость элемента чрезвычайно сильно зависит от соотношения числа протонов и нейтронов в его ядре. Например, свинец со 126-ю нейтронами стабилен, а другой его изотоп, в ядре которого на один нейтрон больше, распадается за три с лишним часа. Но, отмечал В. Л. Гинзбург, теория предсказывает, что некий элемент Х с числом протонов Z = 114 и нейтронов N = 184, то есть с массовым атомным числом А = Z + N = 298, должен жить примерно 100 миллионов лет.

Сегодня искусственно получено множество элементов вплоть до 118-го включительно - 254 Uuo. Это самый тяжёлый неметалл, предположительно - инертный газ; его условные названия унуноктий (оно образовано из корней латинских числительных - 1, 1, 8), эка-радон и московий Mw. Все искусственные элементы когда-то существовали на Земле, но с течением времени распались. Например, плутоний-94 имеет 16 изотопов, и только у 244 Pu период полураспада Т ½ = 7,6·10 7 лет; у нептуния-93 12 изотопов и у 237 Np Т ½ = 2,14·10 6 лет. Эти самые длительные периоды полураспада среди всех изотопов данных элементов гораздо меньше возраста Земли - (4,5–5,5)·10 9 . Ничтожные следы нептуния, которые находят в урановых рудах, - продукты ядерных реакций под действием нейтронов космического излучения и спонтанного деления урана, а плутония - следствие бета-распада нептуния-239.

Элементы, пропавшие за время существования Земли, получают двумя способами. Во-первых, в ядро тяжёлого элемента можно вогнать лишний нейтрон. Там он претерпевает бета-распад, образуя протон, электрон и электронное антинейтрино: n 0 → p + e – + v e . Заряд ядра увеличится на единицу - возникнет новый элемент. Так получали искусственные элементы вплоть до фермия-100 (его изотоп 257 Fm имеет период полураспада 100 лет).

Ещё более тяжёлые элементы создают в ускорителях, которые разгоняют и сталкивают ядра, например золота (см. «Наука и жизнь» № 6, 1997 г.). Именно так в лаборатории ядерных реакций Объединённого института ядерных исследований (ОИЯИ, г. Дубна) и получили 117-й и 118-й элементы. Причём теория предсказывает, что далеко за пределами известных ныне тяжёлых радиоактивных элементов должны существовать стабильные сверхтяжёлые ядра. Российский физик Г. Н. Флёров изобразил систему элементов в виде символического архипелага, где стабильные элементы окружены морем короткоживущих изотопов, которые, возможно, так никогда и не будут обнаружены. На главном острове архипелага высятся пики наиболее стабильных элементов - Кальция, Олова и Свинца, за проливом Радиоактивности лежит остров Тяжёлых ядер с пиками Урана, Нептуния и Плутония. А ещё дальше должен располагаться таинственный остров Стабильности сверхтяжёлых элементов, подобных уже упомянутому - Х-298.

Несмотря на все успехи экспериментальной и теоретической физики, остаётся открытым вопрос: существуют ли в природе сверхтяжёлые элементы, или же они - чисто искусственные, рукотворные вещества, подобные синтетическим материалам - капрону, нейлону, лавсану, - природой никогда не создававшимся?

Условия для образования таких элементов в природе есть. Они создаются в недрах пульсаров и при взрывах сверхновых звёзд. Потоки нейтронов в них достигают огромной плотности - 10 38 n 0 /м 2 и способны порождать сверхтяжёлые ядра. Они разлетаются в космосе в потоке межгалактических космических лучей, но их доля чрезвычайно мала - всего несколько частиц на квадратный метр в год. Поэтому возникла мысль использовать природный детектор-накопитель космического излучения, в котором сверхтяжёлые ядра должны оставить специфический, легко узнаваемый след. Такими детекторами с успехом послужили метеориты.

Метеорит - кусок породы, вырванный какой-то космической катастрофой из материнской планеты, - путешествует в космосе сотни миллионов лет. Его непрерывно «обстреливают» космические лучи, которые на 90% состоят из ядер водорода (протонов), на 7% - из ядер гелия (двух протонов) и на 1% - из электронов. На оставшиеся 2% приходятся другие частицы, среди которых могут быть и сверхтяжёлые ядра.

Исследователи из Физического института им. П. Н. Лебедева (ФИАН) и Института геохимии и аналитической химии им. В. И. Вернадского (ГЕОХИ РАН) изучают два палласита - железоникелиевые метеориты с вкраплениями оливина (группа полупрозрачных минералов, в которых к двуокиси кремния SiO 4 присоединены в разных пропорциях Mg 2 , (Mg, Fe) 2 и (Mn, Fe) 2 ; прозрачный оливин называется хризолитом). Возраст этих метеоритов - 185 и 300 миллионов лет.

Тяжёлые ядра, пролетая сквозь кристалл оливина, повреждают его решётку, оставляя в ней свои следы - треки. Они становятся видны после химической обработки кристалла - травления. А поскольку оливин полупрозрачен, треки эти можно наблюдать и изучать в микроскоп. По толщине трека, его длине и форме можно судить о заряде и атомной массе ядра. Исследования сильно осложняет то, что кристаллы оливина имеют размеры порядка нескольких миллиметров, а трек тяжёлой частицы гораздо длиннее. Поэтому о величине её заряда приходится судить по косвенным данным - скорости травления, уменьшению толщины трека и пр.

Работы по отысканию следов сверхтяжёлых частиц с острова стабильности назвали «Проект Олимпия». В рамках этого проекта получены сведения примерно о шести тысячах ядер с зарядом более 55 и трёх ультратяжёлых ядрах, заряды которых лежат в интервале от 105 до 130. Все характеристики треков этих ядер измерены комплексом высокоточной аппаратуры, созданным в ФИАНе. Комплекс в автоматическом режиме распознаёт треки, определяет их геометрические параметры и, экстраполируя данные измерений, находит предположительную длину трека до его остановки в массиве оливина (напомним, что реальный размер его кристалла - несколько миллиметров).

Полученные экспериментальные результаты подтверждают реальность существования в природе стабильных сверхтяжёлых элементов.

Ученые из Университета Нового Южного Уэльса (Австралия) и Майнцского университета (Германия) предположили, что одна из самых необычных (среди известных астрономам) звезд содержит химические элементы из острова стабильности. Это элементы в самом конце таблицы Менделеева, от соседей слева их отличает большее время жизни. Исследование опубликовано в библиотеке электронных препринтов arXiv.org, о его результатах и стабильных сверхтяжелых химических элементах рассказывает .

Звезда HD 101065 открыта в 1961 году польско-австралийским астрономом Антонином Пшибыльским. Она находится на расстоянии около 400 световых лет от Земли в созвездии Центавра. Вероятнее всего, HD 101065 легче Солнца и представляет собой звезду главной последовательности, субгиганта. Особенность звезды Пшибыльского - крайне малое содержание в атмосфере железа и никеля. В то же время звезда богата тяжелыми элементами, в том числе стронцием, цезием, торием, иттербием и ураном.

Звезда Пшибыльского - единственная, в которой обнаружены короткоживущие радиоактивные элементы, актиноиды, с атомным номером (числом протонов в ядре) от 89 до 103: актиний, плутоний, америций и эйнштейний. На HD 101065 похожа HD 25354, но наличие там америция и кюрия вызывает сомнения.

Механизм образования сверхтяжелых элементов на звезде Пшибыльского до сих пор не вполне понятен . Предполагалось, что HD 101065 вместе с нейтронной звездой образует двойную систему - частицы со второй падают на первую, провоцируя реакции синтеза тяжелых элементов. Эта гипотеза пока не подтверждена, хотя не исключено, что на расстоянии около тысячи астрономических единиц от HD 101065 располагается тусклый спутник.

Фото: N. Dautel / Globallookpress.com

Сильнее всего HD 101065 похожа на Ap-звезды, пекулярные (peculiar) светила спектрального класса A, в чьем спектре усилены линии редкоземельных металлов. У них сильное магнитное поле, тяжелые элементы в их атмосферу поступают из недр. От остальных Ap-звезд HD 101065 отличается кратковременными изменениями в кривой блеска, что позволило включить ее в отдельную группу RoAp-звезд (Rapidly oscillating Ap stars).

Вероятно, попытки ученых вписать HD 101065 в существующую классификацию звезд когда-нибудь увенчаются успехом. Пока звезда Пшибыльского считается одной из самых необычных - это дает основания подозревать у нее ряд необычных свойств. В частности, в последней работе, посвященной HD 101065, австралийские и немецкие исследователи допустили, что в звезде Пшибыльского рождаются химические элементы, относящиеся к острову стабильности.

Ученые исходили из оболочечной модели ядра и ее расширений. Модель связывает устойчивость атомного ядра с заполнением энергетических уровней оболочек, которые, по аналогии с электронными оболочками атома, образуют ядро. Каждые нейтрон и протон находятся на определенной оболочке (расстоянии от центра атома или энергетическом уровне) и движутся независимо друг от друга в некотором самосогласованном поле.

Считается, что чем более заполнены энергетические уровни ядра, тем устойчивее изотоп. Модель хорошо объясняет устойчивость атомных ядер, спины и магнитные моменты, однако применима лишь к невозбужденным или легким и средним по массовому числу ядрам.

В соответствии с оболочечной моделью, ядра с целиком заполненными энергетическими оболочками характеризуются высокой стабильностью. Такие элементы и образуют «остров стабильности». Начинается он с изотопов с порядковыми номерами 114 и 126, соответствующими магическому и дважды магическому числам.

У ядер с магическим числом нуклонов (протонов и нейтронов) наиболее сильная энергия связи. В таблице нуклидов они размещены следующим образом: по горизонтали слева направо по возрастанию указано число протонов, а по вертикали сверху вниз - число нейтронов. У дважды магического ядра количество протонов и нейтронов равно какому-либо магическому числу.

Период полураспада изотопов флеровия (114-й элемент), полученных в Дубне, - до 2,7 секунды. Согласно теории, должен существовать изотоп флеровий-298 c магическим числом нейтронов N=184 и временем жизни порядка десяти миллионов лет. Синтезировать такое ядро пока не удалось. Для сравнения, период полураспада соседних элементов с числами протонов в ядре, равными 113 и 115, - до 19,6 секунды (для нихония-286) и 0,156 секунды (для московия-289) соответственно.

Авторы публикации на arXiv.org считают, что наличие в атмосфере HD 101065 актиноидов говорит в пользу того, что там же имеются и химические элементы из острова стабильности. Актиноиды в таком случае - продукт распада стабильных сверхтяжелых элементов. Ученые предлагают провести поиск в спектрах HD 101065 следов нобелия, лоуренсия, нихония, флеровия и описывают конкретные спектры, которые могут производить устойчивые изотопы.

В настоящее время новые элементы таблицы Менделеева синтезируются в России, США, Японии и Германии. На Земле трансурановые элементы в естественной среде не обнаружены. Звезда HD 101065, возможно, открывает новые возможности для проверки теорий физиков-ядерщиков, предполагающих существование острова стабильности.

ЕСТЬ ЛИ ПРЕДЕЛ
ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Д.И.МЕНДЕЛЕЕВА?

ОТКРЫТИЕ НОВЫХ ЭЛЕМЕНТОВ

П роблема систематизации химических элементов привлекла к себе пристальное внимание в середине XIX в., когда стало ясно, что многообразие окружающих нас веществ является результатом разных сочетаний сравнительно малого числа химических элементов.

В хаосе элементов и их соединений великий русский химик Д.И.Менделеев первым навел порядок, создав свою периодическую таблицу элементов.

1 марта 1869 г. считается днем открытия периодического закона, когда Менделеев сообщил о нем научному сообществу. Известные в то время 63 элемента ученый разместил в своей таблице таким образом, что главные свойства этих элементов и их соединений менялись периодически по мере увеличения их атомной массы. Наблюдаемые изменения свойств элементов в горизонтальном и вертикальном направлениях таблицы следовали строгим правилам. Например, ярко выраженный у элементов Iа группы металлический (основный) характер с увеличением атомной массы убывал по горизонтали таблицы и возрастал по вертикали.

Опираясь на открытый закон, Менделеев предсказал свойства нескольких еще не открытых элементов и их место в периодической таблице. Уже в 1875 г. был открыт «экаалюминий» (галлий), еще через четыре года – «экабор» (скандий), а в 1886 г. – «экасилиций» (германий). В последующие годы таблица Менделеева служила и до сих пор служит ориентиром в поисках новых элементов и предвидении их свойств.

Однако ни сам Менделеев, ни его современники не могли ответить на вопрос, в чем причины периодичности свойств элементов, существует ли и где проходит граница периодической системы. Менделеев предчувствовал, что причина представленной им взаимосвязи между свойствами и атомной массой элементов кроется в сложности самих атомов.

Лишь спустя много лет после создания периодической системы химических элементов в работах Э.Резерфорда, Н.Бора и других ученых было доказано сложное строение атома. Последующие достижения атомной физики позволили решить многие неясные проблемы периодической системы химических элементов. Прежде всего оказалось, что место элемента в периодической таблице определяется не атомной массой, а зарядом ядра. Стала понятной природа периодичности химических свойств элементов и их соединений.

Атом стали рассматривать как систему, в центре которой находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. При этом электроны группируются в околоядерном пространстве и движутся по определенным орбитам, входящим в электронные оболочки.

Все электроны атома принято обозначать с помощью чисел и букв. Согласно этому обозначению главные квантовые числа 1, 2, 3, 4, 5, 6, 7 относятся к электронным оболочкам, а буквы s , p , d , f , g – к подоболочкам (орбитам) каждой оболочки. Первая оболочка (считая от ядра) имеет только s -электроны, вторая может иметь s - и p - электроны, третья – s -, p - и d -электроны, четвертая – s -,
p -, d - и f - электроны и т.д.

Каждая оболочка может вместить вполне определенное число электронов: первая – 2, вторая – 8, третья – 18, четвертая и пятая – по 32. Этим определяется число элементов в периодах таблицы Менделеева. Химические свойства элементов обусловлены строением внешней и предвнешней электронных оболочек атомов, т.е. тем, сколько электронов они содержат.

Ядро атома состоит из положительно заряженных частиц – протонов и электрически нейтральных частиц – нейтронов, часто называемых одним словом – нуклоны. Порядковый номер элемента (его место в периодической таблице) определяется числом протонов в ядре атома данного элемента. Массовое число А атома элемента равно сумме чисел протонов Z и нейтронов N в ядре: A = Z + N . Атомы одного и того же элемента с разным числом нейтронов в ядре являются его изотопами.

Химические свойства разных изотопов одного и того же элемента не отличаются друг от друга, а ядерные – изменяются в широких пределах. Это проявляется прежде всего в стабильности (или нестабильности) изотопов, которая существенно зависит от соотношения числа протонов и нейтронов в ядре. Легкие стабильные изотопы элементов обычно характеризуются равным числом протонов и нейтронов. С ростом заряда ядра, т. е. порядкового номера элемента в таблице, это соотношение меняется. У стабильных тяжелых ядер нейтронов почти в полтора раза больше, чем протонов.

Как и атомные электроны, нуклоны также образуют оболочки. С увеличением числа частиц в ядре последовательно заполняются протонные и нейтронные оболочки. Ядра с полностью заполненными оболочками являются самыми стабильными. Например, очень устойчивой ядерной структурой характеризуется изотоп свинца Pb-208, который имеет заполненные оболочки протонов (Z = 82) и нейтронов (N = 126).

Подобные заполненные ядерные оболочки аналогичны заполненным электронным оболочкам атомов инертных газов, представляющих отдельную группу в периодической таблице. Стабильные ядра атомов с полностью заполненными протонными или нейтронными оболочками содержат определенные «магические» числа протонов или нейтронов: 2, 8, 20, 28, 50, 82, 114, 126, 184. Таким образом, атомам элементов в целом, как и по химическим свойствам, присуща также периодичность и ядерных свойств. Среди разных сочетаний числа протонов и нейтронов в ядрах изотопов (четно-четных; четно-нечетных; нечетно-четных; нечетно-нечетных) именно ядра, содержащие четное число протонов и четное число нейтронов, отличаются наибольшей устойчивостью.

Природа сил, удерживающих в ядре протоны и нейтроны, пока недостаточно ясна. Полагают, что между нуклонами действуют очень большие гравитационные силы притяжения, которые способствуют увеличению стабильности ядер.

К середине тридцатых годов прошлого столетия периодическая таблица была разработана настолько, что показывала положение уже 92 элементов. Под порядковым номером 92 был уран – последний из найденных на Земле еще в 1789 г. естественных тяжелых элементов. Из 92 элементов таблицы только элементы с порядковыми номерами 43, 61, 85 и 87 в тридцатые годы не были точно установлены. Они были открыты и изучены позже. Редкоземельный элемент с атомным номером 61 – прометий – был обнаружен в малых количествах в рудах как продукт самопроизвольного распада урана. Анализ атомных ядер недостающих элементов показал, что все они радиоактивны, причем из-за коротких периодов их полураспада они не могут существовать на Земле в заметных концентрациях.

В связи с тем, что последним тяжелым элементом, найденным на Земле, был элемент с атомным номером 92, можно было бы предположить, что он и является естественным пределом периодической таблицы Менделеева. Однако достижения атомной физики указали путь, по которому оказалось возможным перешагнуть через поставленную природой границу периодической таблицы.

Элементы с бо льшими атомными номерами, чем у урана, называют трансурановыми. По своему происхождению эти элементы являются искусственными (синтетическими). Их получают путем ядерных реакций трансформации элементов, встречающихся в природе.

Первую попытку, хотя не совсем удачную, открыть трансурановую область периодической системы предпринял итальянский физик Энрико Ферми в Риме вскоре после того, как было доказано существование нейтронов. Но лишь в 1940–1941 гг. успеха в открытии первых двух трансурановых элементов, а именно нептуния (атомный номер 93) и плутония (атомный номер 94), добились американские ученые из Калифорнийского университета в Беркли.

В основе методов получения трансурановых элементов лежит несколько видов ядерных реакций.

Первый вид – нейтронный синтез. В этом методе в ядрах тяжелых атомов, облученных нейтронами, происходит превращение одного из нейтронов в протон. Реакция сопровождается так называемым электронным распадом ( – -распадом) – образованием и выбросом из ядра с огромной кинетической энергией отрицательно заряженной – -частицы (электрона). Реакция возможна при избытке в ядре нейтронов.

Противоположной реакцией является превращение протона в нейтрон с испусканием положительно заряженной + -частицы (позитрона). Подобный позитронный распад ( + -распад) наблюдается при недостатке в ядрах нейтронов и ведет к уменьшению заряда ядра, т.е. к уменьшению атомного номера элемента на единицу. Аналогичный эффект достигается, когда протон превращается в нейтрон за счет захвата ближайшего орбитального электрона.

Новые трансурановые элементы вначале были получены из урана по методу нейтронного синтеза в ядерных реакторах (как продукты взрыва ядерных бомб), а позже синтезированы с помощью ускорителей частиц – циклотронов.

Второй вид – реакции между ядрами атомов исходного элемента («мишени») и ядрами атомов легких элементов (изотопов водорода, гелия, азота, кислорода и других), используемых в качестве бомбардирующих частиц. Протоны в ядрах «мишени» и «снаряда» имеют положительный электрический заряд и испытывают сильное отталкивание при приближении друг к другу. Чтобы преодолеть силы отталкивания, образовать составное ядро, необходимо обеспечить атомы «снаряда» очень большой кинетической энергией. Такой огромной энергией бомбардирующие частицы запасаются в циклотронах. Образовавшееся промежуточное составное ядро обладает довольно большой избыточной энергией, которая должна быть высвобождена для стабилизации нового ядра. В случае тяжелых трансурановых элементов эта избыточная энергия, когда не происходит деления ядер, рассеивается путем испускания -лучей (высокоэнергетического электромагнитного излучения) и «испарения» нейтронов из возбужденных ядер. Ядра атомов нового элемента являются радиоактивными. Они стремятся достигнуть более высокой устойчивости путем изменения внутреннего строения через радиоактивный электронный – -распад либо -распад и самопроизвольное деление. Такие ядерные реакции присущи наиболее тяжелым атомам элементов с порядковыми номерами выше 98.

Реакция спонтанного, самопроизвольного деления ядер атомов радиоактивных элементов была открыта нашим соотечественником Г.Н.Флеровым и чехом К.А.Петржаком в Объединенном институте ядерных исследований (ОИЯИ, г. Дубна) в опытах с ураном-238. Увеличение порядкового номера приводит к быстрому уменьшению времени полураспада ядер атомов радиоактивных элементов.

В связи с этим фактом выдающийся американский ученый Г.Т.Сиборг, лауреат Нобелевской премии, участвовавший в открытии девяти трансурановых элементов, полагал, что открытие новых элементов, вероятно, закончится приблизительно на элементе с порядковым номером 110 (по свойствам аналогичном платине). Эта мысль о границе периодической таблицы была высказана в 60-е годы прошлого столетия с оговоркой: если не будут открыты новые методы синтеза элементов и существование пока неизвестных областей устойчивости самых тяжелых элементов. Некоторые из таких возможностей были выявлены.

Третий вид ядерных реакций синтеза новых элементов – реакции между высокоэнергетическими ионами со средней атомной массой (кальция, титана, хрома, никеля) в качестве бомбардирующих частиц и атомами стабильных элементов (свинца, висмута) в качестве «мишени» вместо тяжелых радиоактивных изотопов. Этот путь получения более тяжелых элементов был предложен в 1973 г. нашим ученым Ю.Ц.Оганесяном из ОИЯИ и успешно использован в других странах. Главное достоинство предложенного метода синтеза заключалось в образовании менее «горячих» составных ядер при слиянии ядер «снаряда» и «мишени». Высвобождение избыточной энергии составных ядер в этом случае происходило в результате «испарения» существенно меньшего числа нейтронов (одного или двух вместо четырех или пяти).

Необычная ядерная реакция между ионами редкого изотопа Са-48, ускоренными в циклотроне
У-400, и атомами актиноидного элемента кюрия Cm-248 с образованием элемента-114 («экасвинца») была открыта в Дубне в 1979 г. Было установлено, что в этой реакции образуется «холодное» ядро, не «испаряющее» ни одного нейтрона, а всю избыточную энергию уносит одна -частица. Это означает, что для синтеза новых элементов может быть реализован также четвертый вид ядерных реакций между ускоренными ионами атомов со средними массовыми числами и атомами тяжелых трансурановых элементов.

В развитии теории периодической системы химических элементов большую роль сыграло сопоставление химических свойств и строения электронных оболочек лантаноидов с порядковыми номерами 58–71 и актиноидов с порядковыми номерами 90–103. Было показано, что сходство химических свойств лантаноидов и актиноидов обусловлено подобием их электронных структур. Обе группы элементов являются примером внутреннего переходного ряда с последовательным заполнением 4f - или 5f -электронных оболочек соответственно после заполнения внешних s - и р -электронных орбиталей.

Элементы с порядковыми номерами в периодической таблице 110 и выше были названы сверхтяжелыми. Продвижение к открытию этих элементов становится все более трудным и долгим, т.к. недостаточно провести синтез нового элемента, нужно его идентифицировать и доказать, что новый элемент обладает лишь ему одному присущими свойствами. Трудности вызваны тем, что для изучения свойств новых элементов доступным оказывается небольшое число атомов. Время же, в течение которого можно изучать новый элемент до того, как произойдет радиоактивный распад, обычно очень невелико. В этих случаях, даже когда получен всего один атом нового элемента, для его обнаружения и предварительного изучения некоторых характеристик используют метод радиоактивных индикаторов.

Элемент-109 – мейтнерий – это последний элемент в периодической таблице, представленной в большинстве учебников по химии. Элемент-110, принадлежащий к той же группе периодической таблицы, что и платина, был впервые синтезирован в г. Дармштадт (Германия) в 1994 г. с помощью мощного ускорителя тяжелых ионов по реакции:

Время полураспада полученного изотопа крайне мало. В августе 2003 г. 42-я Генеральная ассамблея ИЮПАК и Совет ИЮПАК (Международный союз по чистой и прикладной химии) официально утвердили название и символ элемента-110: дармштадтий, Ds.

Там же, в Дармштадте, в 1994 г. впервые был получен элемент-111 путем воздействия пучка ионов изотопа 64 28 Ni на атомы 209 83 Bi в качестве «мишени». Своим решением в 2004 г. ИЮПАК признал открытие и одобрил предложение назвать элемент-111 рентгением, Rg, в честь выдающегося немецкого физика В.К.Рентгена, открывшего Х -лучи, которым он дал такое название из-за неопределенности их природы.

По информации, полученной из ОИЯИ, в Лаборатории ядерных реакций им. Г.Н.Флерова осуществлен синтез элементов с порядковыми номерами 110–118 (за исключением элемента-117).

В результате синтеза по реакции:

в Дармштадте в 1996 г. получено несколько атомов нового элемента-112, распадающегося с выделением -частиц. Период полураспада этого изотопа составлял всего 240 микросекунд. Немного позже в ОИЯИ поиск новых изотопов элемента-112 провели, облучая атомы U-235 ионами Са-48.

В феврале 2004 г. в престижных научных журналах появились сообщения об открытии в ОИЯИ нашими учеными совместно с американскими исследователями из Национальной лаборатории имени Лоуренса в Беркли (США) двух новых элементов с номерами 115 и 113. Этой группой ученых в экспериментах, проведенных в июле–августе 2003 г. на циклотроне У-400 с газонаполненным сепаратором, в реакции между атомами Am-243 и ионами изотопа Ca-48 были синтезированы 1 атом изотопа элемента-115 с массовым числом 287 и 3 атома с массовым числом 288. Все четыре атома элемента-115 быстро распадались с выделением -частиц и образованием изотопов элемента-113 с массовыми числами 282 и 284. Наиболее стабильный изотоп 284 113 имел период полураспада около 0,48 с. Он разрушался с эмиссией -частиц и превращался в изотоп рентгения 280 Rg.

В сентябре 2004 г. группа японских ученых из Физико-химического исследовательского института под руководством Косуки Морита (Kosuke Morita) заявила, что ими синтезирован элемент-113 по реакции:

При его распаде с выделением -частиц получен изотоп рентгения 274 Rg. Поскольку это первый искусственный элемент, полученный японскими учеными, они посчитали, что вправе сделать предложение назвать его «японием».

Выше уже отмечался необычный синтез изотопа элемента-114 с массовым числом 288 из кюрия. В 1999 г. появилось сообщение о получении в ОИЯИ этого же изотопа элемента-114 путем бомбардировки ионами Са-48 атомов плутония с массовым числом 244.

Было также заявлено об открытии элементов с порядковыми номерами 118 и 116 в результате длительных совместных исследований ядерных реакций изотопов калифорния Cf-249 и кюрия Сm-245 c пучком тяжелых ионов Са-48, проведенных российскими и американскими учеными в период 2002–2005 гг. в ОИЯИ. Элемент-118 замыкает 7-й период таблицы Менделеева, по своим свойствам является аналогом благородного газа радона. Элемент-116 должен обладать некоторыми свойствами, общими с полонием.

По сложившейся традиции открытие новых химических элементов и их идентификация должны быть подтверждены решением ИЮПАК, но право предложить названия элементам предоставляется первооткрывателям. Подобно карте Земли, периодическая таблица отразила названия территорий, стран, городов и научных центров, где были открыты и изучены элементы и их соединения, увековечила имена знаменитых ученых, внесших большой вклад в развитие периодической системы химических элементов. И не случайно элемент-101 назван именем Д.И.Менделеева.

Для ответа на вопрос, где может проходить граница периодической таблицы, в свое время была проведена оценка электростатических сил притяжения внутренних электронов атомов к положительно заряженному ядру. Чем больше порядковый номер элемента, тем сильнее сжимается электронная «шуба» вокруг ядра, тем сильнее притягиваются внутренние электроны к ядру. Должен наступить такой момент, когда электроны начнут захватываться ядром. В результате такого захвата и уменьшения заряда ядра существование очень тяжелых элементов становится невозможным. Подобная катастрофическая ситуация должна возникнуть при порядковом номере элемента, равном 170–180.

Эта гипотеза была опровергнута и показано, что нет ограничений для существования очень тяжелых элементов с точки зрения представлений о строении электронных оболочек. Ограничения возникают в результате неустойчивости самих ядер.

Однако надо сказать, что время жизни элементов уменьшается нерегулярно с ростом атомного номера. Следующая ожидаемая область устойчивости сверхтяжелых элементов, обусловленная появлением замкнутых нейтронных или протонных оболочек ядра, должна лежать в окрестности дважды магического ядра с 164 протонами и 308 нейтронами. Возможности открытия таких элементов пока не ясны.

Таким образом, вопрос о границе периодической таблицы элементов по-прежнему сохраняется. Исходя из правил заполнения электронных оболочек с увеличением атомного номера элемента, прогнозируемый 8-й период таблицы Менделеева должен содержать суперактиноидные элементы. Отводимое им место в периодической таблице Д.И.Менделеева соответствует III группе элементов, подобно уже известным редкоземельным и актиноидным трансурановым элементам.