Болезни Военный билет Призыв

Обычные градиентные методы. Градиентный спуск. Метод Нелдера - Мида

Также можно искать не наилучшую точку в направлении градиента, а какую-либо лучше текущей.

Наиболее простой в реализации из всех методов локальной оптимизации. Имеет довольно слабые условия сходимости, но при этом скорость сходимости достаточно мала (линейна). Шаг градиентного метода часто используется как часть других методов оптимизации, например, метод Флетчера - Ривса .

Описание [ | ]

Усовершенствования [ | ]

Метод градиентного спуска оказывается очень медленным при движении по оврагу, причём при увеличении числа переменных целевой функции такое поведение метода становится типичным. Для борьбы с этим явлением используется, суть которого очень проста. Сделав два шага градиентного спуска и получив три точки, третий шаг следует сделать в направлении вектора, соединяющего первую и третью точку, вдоль дна оврага.

Для функций, близких к квадратичным, эффективным является метод сопряжённых градиентов .

Применение в искусственных нейронных сетях [ | ]

Метод градиентного спуска с некоторой модификацией широко применяется для обучения перцептрона и в теории искусственных нейронных сетей известен как метод обратного распространения ошибки . При обучении нейросети типа «персептрон» требуется изменять весовые коэффициенты сети так, чтобы минимизировать среднюю ошибку на выходе нейронной сети при подаче на вход последовательности обучающих входных данных. Формально, чтобы сделать всего один шаг по методу градиентного спуска (сделать всего одно изменение параметров сети), необходимо подать на вход сети последовательно абсолютно весь набор обучающих данных, для каждого объекта обучающих данных вычислить ошибку и рассчитать необходимую коррекцию коэффициентов сети (но не делать эту коррекцию), и уже после подачи всех данных рассчитать сумму в корректировке каждого коэффициента сети (сумма градиентов) и произвести коррекцию коэффициентов «на один шаг». Очевидно, что при большом наборе обучающих данных алгоритм будет работать крайне медленно, поэтому на практике часто производят корректировку коэффициентов сети после каждого элемента обучения, где значение градиента аппроксимируются градиентом функции стоимости, вычисленном только на одном элементе обучения. Такой метод называют стохастическим градиентным спуском или оперативным градиентным спуском . Стохастический градиентный спуск является одной из форм стохастического приближения. Теория стохастических приближений даёт условия сходимости метода стохастического градиентного спуска.

Ссылки [ | ]

  • J. Mathews. Module for Steepest Descent or Gradient Method. (недоступная ссылка)

Литература [ | ]

  • Акулич И. Л. Математическое программирование в примерах и задачах. - М. : Высшая школа, 1986. - С. 298-310.
  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация = Practical Optimization. - М. : Мир, 1985.
  • Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. - М. : Энергоатомиздат, 1972.
  • Максимов Ю. А., Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. - М. : МИФИ, 1982.
  • Максимов Ю. А. Алгоритмы линейного и дискретного программирования. - М. : МИФИ, 1980.
  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М. : Наука, 1970. - С. 575-576.
  • С. Ю. Городецкий, В. А. Гришагин. Нелинейное программирование и многоэкстремальная оптимизация. - Нижний Новгород: Издательство Нижегородского Университета, 2007. - С. 357-363.

Лекция 6.

Градиентные методы решения задач нелинейного программирования.

Вопросы: 1. Общая характеристика методов.

2. Метод градиента.

3. Метод наискорейшего спуска.

4. Метод Франка-Фулфа.

5. Метод штрафных функций.

1. Общая характеристика методов.

Градиентные методы представляют собой приближенные (итерационные) методы решения задачи нелинейного программирования и позволяют решить практически любую задачу. Однако при этом определяется локальный экстремум. Поэтому целесообразно применять эти методы для решения задач выпуклого программирования, в которых каждый локальный экстремум является и глобальным. Процесс решения задачи состоит в том, что, начиная с некоторой точки х (начальной), осуществляется последовательный переход в направлении gradF(x), если определяется точка максимума, и –gradF(x) (антиградиента), если определяется точка минимума, до точки, являющейся решением задачи. При этом эта точка может оказаться как внутри области допустимых значений, так и на ее границе.

Градиентные методы можно разделить на два класса (группы). К первой группе относятся методы, в которых все исследуемые точки принадлежат допустимой области. К таким методам относятся: метод градиента, наискорейшего спуска, Франка-Вулфа и др. Ко второй группе относятся методы, в которых исследуемые точки могут и не принадлежать допустимой области. Общим из таких методов является метод штрафных функций. Все методы штрафных функций отличаются друг от друга способом определения «штрафа».

Основным понятием, используемым во всех градиентных методах, является понятие градиента функции, как направления наискорейшего возрастания функции.

При определении решения градиентными методами итерационный процесс продолжается до тех пор, пока:

Либо grad F(x*) = 0, (точное решение);

где
- две последовательные точки,
- малое число, характеризующее точность решения.

2. Метод градиента.

Представим человека, стоящего на склоне оврага, которому необходимо спуститься вниз (на дно). Наиболее естественным, кажется, направление в сторону наибольшей крутизны спуска, т.е. направление (-grad F(x)). Получаемая при этом стратегия, называемая градиентным методом , представляет собой последовательность шагов, каждый из которых содержит две операции:

а) определение направления наибольшей крутизны спуска (подъема);

б) перемещение в выбранном направлении на некоторый шаг.

Правильный выбор шага имеет существенное значение. Чем шаг меньше, тем точнее результат, но больше вычислений. Различные модификации градиентного метода и состоят в использовании различных способов определения шага. Если на каком-либо шаге значение F(x) не уменьшилось, это означает, что точку минимума «проскочили», в этом случае необходимо вернуться к предыдущей точке и уменьшить шаг, например, вдвое.

Схема решения.

принадлежащей допустимой области

3. Выбор шага h.

x (k+1) = x (k)

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Замечание. Если grad F(x (k)) = 0, то решение будет точным.

Пример. F(x) = -6x 1 + 2x 1 2 – 2x 1 x 2 + 2x 2 2
min,

x 1 +x 2 2,x 1 0, x 2 0,= 0,1.

3. Метод наискорейшего спуска.

В отличие от метода градиента, в котором градиент определяют на каждом шаге, в методе наискорейшего спуска градиент находят в начальной точке и движение в найденном направлении продолжают одинаковыми шагами до тех пор, пока значение функции уменьшается (увеличивается). Если на каком-либо шаге F(x) возросло (уменьшилось), то движение в данном направлении прекращается, последний шаг снимается полностью или наполовину и вычисляется новое значение градиента и новое направление.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n),

принадлежащей допустимой области,

и F(x 0), k = 0.

2. Определение grad F(x 0) или –gradF(x 0).

3. Выбор шага h.

4. Определение следующей точки по формуле

x (k+1) = x (k) h grad F(x (k)), «+» - если max,

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Если нет:

а) при поиске min: - если F(x (k +1))

Если F(x (k +1)) >F(x (k)) – переход к п. 2;

б) при поиске max: - еслиF(x (k +1)) >F(x (k)) – переход к п. 4;

Если F(x (k +1))

Замечания: 1. Если grad F(x (k)) = 0, то решение будет точным.

2. Преимуществом метода наискорейшего спуска является его простота и

сокращение расчетов, так как grad F(x) вычисляется не во всех точках, что

важно для задач большой размерности.

3. Недостатком является то, что шаги должны быть малыми, чтобы не

пропустить точку оптимума.

Пример. F(x) = 3x 1 – 0,2x 1 2 + x 2 - 0,2x 2 2
max,

x 1 + x 2 7, x 1 0,

x 1 + 2x 2 10, x 2 0.

4. Метод Франка-Вулфа.

Метод используется для оптимизации нелинейной целевой функции при линейных ограничениях. В окрестности исследуемой точки нелинейная целевая функция заменяется линейной функцией и задача сводится к последовательному решению задач линейного программирования.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n), принадлежащей допустимой области, и F(x 0), k = 0.

2. Определение grad F(x (k)).

3. Строят функцию

(min – «-»;max– «+»).

4. Определение max(min)f(x) при исходных ограничениях. Пусть это будет точка z (k) .

5. Определение шага вычислений x (k +1) =x (k) + (k) (z (k) –x (k)), где (k) – шаг, коэффициент, 0 1. (k) выбирается так, чтобы значение функции F(x) было max (min) в точке х (k +1) . Для этого решают уравнение
и выбирают наименьший (наибольший) из корней, но 0 1.

6. Определение F(x (k +1)) и проверяют необходимость дальнейших вычислений:

Если
или grad F(x (k +1)) = 0, то решение найдено;

Если нет, то переход к п. 2.

Пример. F(x) = 4x 1 + 10x 2 –x 1 2 –x 2 2
max,

x 1 +x 2 4, x 1 0,

x 2 2, x 2 0.

5. Метод штрафных функций.

Пусть необходимо найти F(x 1 ,x 2 ,…,x n)
max(min),

g i (x 1 , x 2 ,…,x n) b i , i =
, x j 0, j =.

Функции F и g i – выпуклые или вогнутые.

Идея метода штрафных функций заключается в поиске оптимального значения новой целевой функции Q(x) = F(x) + H(x), которая является суммой исходной целевой функции и некоторой функции H(x), определяемой системой ограничений и называемой штрафной функцией. Штрафные функции строят таким образом, чтобы обеспечить либо быстрое возвращение в допустимую область, либо невозможность выходы из нее. Метод штрафных функций сводит задачу на условный экстремум к решению последовательности задач на безусловный экстремум, что проще. Существует множество способов построения штрафной функции. Наиболее часто она имеет вид:

H(x) =
,

где

- некоторые положительные Const.

Примечание :

Чем меньше , тем быстрее находится решение, однако, точность снижается;

Начинают решение с малых и увеличивают их на последующих шагах.

Используя штрафную функцию, последовательно переходят от одной точки к другой до тех пор, пока не получат приемлемое решение.

Схема решения.

1. Определение начальную точку х 0 = (х 1 ,x 2 ,…,x n), F(x 0) и k = 0.

2. Выбирают шаг вычислений h.

3. Определяют частные производные и.

4. Определяют координаты следующей точки по формуле:

x j (k +1)
.

5. Если x (k +1) Допустимой области, проверяют:

а) если
- решение найдено, если нет – переход к п. 2.

б) если grad F(x (k +1)) = 0, то найдено точное решение.

Если x (k +1) Допустимой области, задают новое значениеи переходят к п. 4.

Пример. F(x) = – x 1 2 – x 2 2
max,

(x 1 -5) 2 +(x 2 -5) 2 8, x 1 0, x 2 0.

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)

В задаче безусловной оптимизации отсутствуют ограничения.

Напомним, что градиентом многомерной функции называют вектор, который аналитически выражается геометрической суммой частных производных

Градиент скалярной функции F (X ) в некоторой точке направлен в сторону наискорейшего возрастания функции и ортогонален линии уровня (поверхности постоянного значения F (X ), проходящей через точку X k ). Вектор, противоположный градиенту  антиградиент  направлен в сторону наискорейшего убывания функции F (X ). В точке экстремума grad F (X )= 0.

В градиентных методах движение точки при поиске минимума целевой функции описывается итерационной формулой

где k  параметр шага на k -й итерации вдоль антиградиента. Для методов восхождения (поиска максимума) нужно двигаться по градиенту.

Различные варианты градиентных методов отличаются друг от друга способом выбора параметра шага, а также учета направления движения на предыдущем шаге . Рассмотрим следующие варианты градиентных методов: с постоянным шагом, с переменным параметром шага (дроблением шага), метод наискорейшего спуска и метод сопряженных градиентов.

Метод с постоянным параметром шага. В этом методе параметр шага постоянен на каждой итерации. Возникает вопрос: как практически выбрать величину параметра шага? Достаточно малый параметр шага может привести к неприемлемо большому количеству итераций, необходимых для достижения точки минимума. С другой стороны, слишком большой параметр шага может привести к проскакиванию точки минимума и к колебательному вычислительному процессу около этой точки. Указанные обстоятельства являются недостатками метода. Поскольку невозможно заранее угадать приемлемое значение параметра шага k , то возникает необходимость использования градиентного метода с переменным параметром шага.

По мере приближения к оптимуму вектор градиента уменьшается по величине, стремясь к нулю, поэтому при k = const длина шага постепенно уменьшается. Вблизи оптимума длина вектора градиента стремится к нулю. Длина вектора или норма в n -мерном евклидовом пространстве определяется по формуле

, где n  число переменных.

Варианты остановки процесса поиска оптимума:


C практической точки зрения удобней пользоваться 3-им критерием остановки (поскольку представляют интерес значения параметров проектирования), однако для определения близости точки экстремума нужно ориентироваться на 2-й критерий. Для остановки вычислительного процесса можно использовать несколько критериев.

Рассмотрим пример. Найти минимум целевой функции F (X ) = (x 1  2) 2 + (x 2  4) 2 . Точное решение задачи X*= (2,0;4,0). Выражения для частных производных

,
.

Выбираем шаг k = 0,1. Осуществим поиск из начальной точки X 1 = . Решение представим в виде таблицы.

Градиентный метод с дроблением параметра шага. В этом случае в процессе оптимизации параметр шага  k уменьшается, если после очередного шага целевая функция возрастает (при поиске минимума). При этом часто длина шага дробится (делится) пополам, и шаг повторяется из предыдущей точки. Так обеспечивается более точный подход к точке экстремума.

Метод наискорейшего спуска. Методы с переменным шагом являются более экономичными с точки зрения количества итераций. В случае если оптимальная длина шага  k вдоль направления антиградиента является решением одномерной задачи минимизации, то такой метод называется методом наискорейшего спуска. В этом методе на каждой итерации решается задача одномерной минимизации:

F(X k+1 )=F(X k k S k )=min F( k ), S k = F(X);

k >0

.

В данном методе движение в направлении антиградиента продолжается до достижения минимума целевой функции (пока значение целевой функции убывает). На примере рассмотрим, как аналитически может быть записана на каждом шаге целевая функция в зависимости от неизвестного параметра

Пример. min F (x 1 , x 2 ) = 2x 1 2 + 4x 2 3 3. Тогда F (X )= [ 4x 1 ; 12x 2 2 ]. Пусть точка X k = , следовательно F (X )= [ 8; 12], F (X k S k ) =

2(2  8) 2 + 4(1  12) 3  3. Необходимо найти , доставляющее минимум данной функции.

Алгоритм метода наискорейшего спуска (для поиска минимума)

Начальный шаг . Пусть   константа остановки. Выбрать начальную точку X 1 , положить k = 1 и перейти к основному шагу.

Основной шаг . Если || gradF (X )||< , то закончить поиск, в противном случае определить F (X k ) и найти k оптимальное решение задачи минимизации F (X k k S k ) при k 0. Положить X k +1 = X k k S k , присвоить k =

k + 1 и повторить основной шаг.

Для поиска минимума функции одной переменной в методе наискорейшего спуска можно использовать методы унимодальной оптимизации. Из большой группы методов рассмотрим метод дихотомии (бисекции) и золотого сечения. Суть методов унимодальной оптимизации заключается в сужении интервала неопределенности размещения экстремума.

Метод дихотомии (бисекции) Начальный шаг. Выбирают константу различимости  и конечную длину интервала неопределенности l . Величина  должна быть по возможности меньшей, однако позволяющей различать значения функции F () и F () . Пусть [ a 1 , b 1 ]  начальный интервал неопределенности. Положить k =

Основной этап состоит из конечного числа однотипных итераций.

k-я итерация.

Шаг 1. Если b k a k l , то вычисления заканчиваются. Решение x * = (a k + b k )/2. В противном случае

,
.

Шаг 2. Если F ( k ) < F ( k ), положить a k +1 = a k ; b k +1 = k . В противном случае a k +1 = k и b k +1 = b k . Присвоить k = k + 1 и перейти к шагу 1.

Метод золотого сечения. Более эффективный метод, чем метод дихотомии. Позволяет получить заданную величину интервала неопределенности за меньшее число итераций и требует меньшего числа вычислений целевой функции. В этом методе новая точка деления интервала неопределенности вычисляется один раз. Новая точка ставится на расстоянии

 = 0,618034 от конца интервала.

Алгоритм метода золотого сечения

Начальный шаг. Выбрать допустимую конечную длину интервала неопределенности l > 0. Пусть [ a 1 , b 1 ]  начальный интервал неопределенности. Положить 1 = a 1 +(1 )(b 1 a 1 ) и 1 = a 1 + (b 1 a 1 ) , где = 0,618 . Вычислить F ( 1 ) и F ( 1 ) , положить k = 1 и перейти к основному этапу.

Шаг 1. Если b k a k l , то вычисления заканчиваются x * = (a k + b k )/ 2. В противном случае если F ( k ) > F ( k ) , то перейти к шагу 2; если F ( k ) F ( k ) , перейти к шагу 3.

Шаг 2. Положить a k +1 = k , b k +1 = b k , k +1 = k , k +1 = a k +1 + (b k +1 a k +1 ). Вычислить F ( k +1 ), перейти к шагу 4.

Шаг 3. Положить a k +1 = a k , b k +1 = k , k +1 = k , k +1 = a k +1 + (1 )(b k +1 a k +1 ). Вычислить F ( k +1 ).

Шаг 4. Присвоить k = k + 1, перейти к шагу 1.

На первой итерации необходимы два вычисления функции, на всех последующих только одно.

Метод сопряженных градиентов (Флетчера-Ривса). В этом методе выбор направления движения на k + 1 шаге учитывает изменение направления на k шаге. Вектор направления спуска является линейной комбинацией направления антиградиента и предыдущего направления поиска. В этом случае при минимизации овражных функций (с узкими длинными впадинами) поиск идет не перпендикулярно оврагу, а вдоль него, что позволяет быстрее прийти к минимуму. Координаты точки при поиске экстремума методом сопряженных градиентов рассчитываются по выражению X k +1 = X k V k +1 , где V k +1 – вектор, рассчитываемый по следующему выражению:

.

На первой итерации обычно полагается V = 0 и выполняется поиск по антиградиенту, как в методе наискорейшего спуска. Затем направление движения отклоняется от направления антиградиента тем больше, чем значительнее менялась длина вектора градиента на последней итерации. После n шагов для коррекции работы алгоритма делают обычный шаг по антиградиенту.

Алгоритм метода сопряженных градиентов

Шаг 1. Ввести начальную точку Х 0 , точность , размерность n .

Шаг 2. Положить k = 1.

Шаг 3. Положить вектор V k = 0.

Шаг 4. Вычислить grad F (X k ).

Шаг 5. Вычислить вектор V k +1.

Шаг 6. Выполнить одномерный поиск по вектору V k +1.

Шаг 7. Если k < n , положить k = k + 1 и перейти к шагу 4, иначе к шагу 8.

Шаг 8. Если длина вектора V меньше , окончить поиск, иначе  перейти к шагу 2.

Метод сопряженных направлений является одним из наиболее эффективных в решении задач минимизации. Метод в совокупности с одномерным поиском часто практически используется в САПР. Однако следует отметить, что он чувствителен к ошибкам, возникающим в процессе счета.

Недостатки градиентных методов

    В задачах с большим числом переменных трудно или невозможно получить производные в виде аналитических функций.

    При вычислении производных по разностным схемам возникающая при этом ошибка, особенно в окрестностях экстремума, ограничивает возможности такой аппроксимации.

Метод градиентного спуска.

Направление наискорейшего спуска соответствует направлению наибольшего убывания функции. Известно, что направление наибольшего возрастания функции двух переменных u = f(x, у) характеризуется ее градиентом:

где e1, е2 - единичные векторы (орты) в направлении координатных осей. Следовательно, направление, противоположное градиентному, укажет направление наибольшего убывания функции. Методы, основанные на выборе пути оптимизации с помощью градиента, называются градиентными.

Идея метода градиентного спуска состоит в следующем. Выбираем некоторую начальную точку

вычисляем в ней градиент рассматриваемой функции. Делаем шаг в направлении, обратном градиентному:

Процесс продолжается до получения наименьшего значения целевой функции. Строго говоря, момент окончания поиска наступит тогда, когда движение из полученной точки с любым шагом приводит к возрастанию значения целевой функции. Если минимум функции достигается внутри рассматриваемой области, то в этой точке градиент равен нулю, что также может служить сигналом об окончании процесса оптимизации.

Метод градиентного спуска обладает тем же недостатком, что и метод покоординатного спуска: при наличии оврагов на поверхности сходимость метода очень медленная.

В описанном методе требуется вычислять на каждом шаге оптимизации градиент целевой функции f(х):

Формулы для частных производных можно получить в явном виде лишь в том случае, когда целевая функция задана аналитически. В противном случае эти производные вычисляются с помощью численного дифференцирования:

При использовании градиентного спуска в задачах оптимизации основной объем вычислений приходится обычно на вычисление градиента целевой функции в каждой точке траектории спуска. Поэтому целесообразно уменьшить количество таких точек без ущерба для самого решения. Это достигается в некоторых методах, являющихся модификациями градиентного спуска. Одним из них является метод наискорейшего спуска. Согласно этому методу, после определения в начальной точке направления, противоположного градиенту целевой функции, решают одномерную задачу оптимизации, минимизируя функцию вдоль этого направления. А именно, минимизируется функция:

Для минимизации можно использовать один из методов одномерной оптимизации. Можно и просто двигаться в направлении, противоположном градиенту, делая при этом не один шаг, а несколько шагов до тех пор, пока целевая функция не перестанет убывать. В найденной новой точке снова определяют направление спуска (с помощью градиента) и ищут новую точку минимума целевой функции и т. д. В этом методе спуск происходит гораздо более крупными шагами, и градиент функции вычисляется в меньшем числе точек. Разница состоит в том, что здесь направление одномерной оптимизации определяется градиентом целевой функции, тогда как покоординатный спуск проводится на каждом шаге вдоль одного из координатных направлений.

Метод наискорейшего спуска для случая функции двух переменных z = f(x,y).

Во-первых, легко показать, что градиент функции перпендикулярен касательной к линии уровня в данной точке. Следовательно, в градиентных методах спуск происходит по нормали к линии уровня. Во-вторых, в точке, в которой достигается минимум целевой функции вдоль направления, производная функции по этому направлению обращается в нуль. Но производная функции равна нулю по направлению касательной к линии уровня. Отсюда следует, что градиент целевой функции в новой точке перпендикулярен направлению одномерной оптимизации на предыдущем шаге, т. е. спуск на двух последовательных шагах производится во взаимно перпендикулярных направлениях.