Болезни Военный билет Призыв

Соотношение сторон треугольника. Что такое остроугольный треугольник? Треугольник Дали — что это

Треугольник - это многоугольник с 3-мя сторонами (либо 3-мя углами). Стороны треугольника нередко обозначаются малеханькими буквами, которые соответствуют большим буквам, обозначающим обратные вершины.

Остроугольным треугольником именуется треугольник, у которого все три угла острые.

Тупоугольным треугольником именуется треугольник, у которого один из углов тупой.

Прямоугольным треугольником именуется треугольник, у которого один из углов прямой, другими словами равен 90°; стороны a, b, образующие прямой угол, именуются катетами ; сторона c, обратная прямому углу, именуется гипотенузой .

Равнобедренным треугольником именуется треугольник, у которого две его стороны равны (a = c); эти равные стороны именуются боковыми , 3-я сторона именуется основанием треугольника .

Равносторонним треугольником именуется треугольник, у которого все его стороны равны (a = b = c). В том случае в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник .

Главные характеристики треугольников

В любом треугольнике:

  • Против большей стороны лежит больший угол, и напротив.
  • Против равных сторон лежат равные углы, и напротив. А именно, все углы в равностороннем треугольнике равны.
  • Сумма углов треугольника равна 180°.
  • Продолжая одну из сторон треугольника, получаем наружный угол. Наружный угол треугольника равен сумме внутренних углов, не смежных с ним.
  • Неважно какая сторона треугольника меньше суммы 2-ух других сторон и больше их разности (a b - c; b a - c; c a - b).
  • Признаки равенства треугольников

    Треугольники равны, в том случае у их соответственно равны:

  • две стороны и угол меж ними;
  • два угла и прилегающая к ним сторона;
  • три стороны.
  • Признаки равенства прямоугольных треугольников

    Два прямоугольных треугольника равны, в том случае производится одно из последующих критерий:

  • равны их катеты;
  • катет и гипотенуза 1-го треугольника равны катету и гипотенузе другого;
  • гипотенуза и острый угол 1-го треугольника равны гипотенузе и острому углу другого;
  • катет и прилежащий острый угол 1-го треугольника равны катету и прилежащему острому углу другого;
  • катет и противолежащий острый угол 1-го треугольника равны катету и противолежащему острому углу другого.
  • Высота треугольника - это перпендикуляр, опущенный из хоть какой вершины на обратную сторону (либо её продолжение). Эта сторона именуется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке, именуемой ортоцентром треугольника .

    Ортоцентр остроугольного треугольника размещен снутри треугольника, а ортоцентр тупоугольного треугольника - снаружи; ортоцентр прямоугольного треугольника совпадает с верхушкой прямого угла.

    Медиана - это отрезок, соединяющий всякую верхушку треугольника с серединой обратной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся его центром масс. Эта точка разделяет каждую медиану в отношении 2:1, считая от вершины.

    Биссектриса - это отрезок биссектрисы угла от вершины до точки скрещения с обратной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся центром вписанного круга. Биссектриса разделяет обратную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр - это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

    В остроугольном треугольнике эта точка лежит снутри треугольника, в тупоугольном - снаружи, в прямоугольном - посреди гипотенузы. Ортоцентр, центр масс, центр описанного и центр вписанного круга совпадают исключительно в равностороннем треугольнике.

    Аксиома Пифагора

    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Подтверждение аксиомы Пифагора

    Построим квадрат AKMB, используя гипотенузу AB как сторону. Потом продолжим стороны прямоугольного треугольника ABC так, чтоб получить квадрат CDEF, сторона которого равна a + b. Сейчас ясно, что площадь квадрата CDEF равна (a + b) 2. С иной стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, другими словами,

    c 2 + 4 (ab / 2) = c 2 + 2 ab,

    c 2 + 2 ab = (a + b) 2,

    и совсем имеем:

    c 2 = a 2 + b 2 .

    Соотношение сторон в случайном треугольнике

    В общем случае (для случайного треугольника) имеем:

    c 2 = a 2 + b 2 - 2 ab * cos C,

    где С - угол меж сторонами а и b.

  • school-club.ru - какие бывают треугольники?
  • math.ru - виды треугольников;
  • raduga.rkc-74.ru - все о треугольниках для самых малеханьких.
  • Дополнительно на сайт:

  • Как классифицируются треугольники?
  • Как отыскать площадь треугольника?
  • Как отыскать площадь прямоугольного треугольника?
  • Как отыскать радиус вписанной в треугольник окружности?
  • Как отыскать радиус описанной вокруг треугольника окружности?
  • Как доказать аксиому косинусов?
  • Пожалуй, самой основной, простой и интересной фигурой в геометрии является треугольник. В курсе средней школы изучаются его основные свойства, однако иногда знания по этой теме формируются неполными. Виды треугольников изначально определяют их свойства. Но подобное представление остается смешанным. Поэтому сейчас разберем немного подробнее эту тему.

    Виды треугольников зависят от градусной меры углов. Эти фигуры бывают остро-, прямо- и тупоугольными. Если все углы не превышают значения в 90 градусов, то фигуру смело можно назвать остроугольной. Если хотя бы один угол треугольника равен 90 градусам, то вы имеете дело с прямоугольным подвидом. Соответственно, во всех остальных случаях рассматриваемую называют тупоугольной.

    Существует множество задач для остроугольных подвидов. Отличительной чертой является внутреннее местонахождение точек пересечения биссектрис, медиан и высот. В других случаях это условие может не выполняться. Определить тип фигуры “треугольник” нетрудно. Достаточно знать, например, косинус каждого угла. Если какие-нибудь значения меньше нуля, значит, треугольник в любом случае является тупоугольным. В случае нулевого показателя фигура обладает прямым углом. Все положительные значения гарантированно подскажут вам о том, что перед вами остроугольный вид.

    Нельзя не сказать о правильном треугольнике. Это самый идеальный вид, где совпадают все точки пересечения медиан, биссектрис и высот. Центр вписанной и описанной окружности лежит также в одном месте. Для решения задач необходимо знать только одну сторону, так как вам углы изначально заданы, а две другие стороны известной. То есть фигура задается только одним параметром. Существуют Их главная особенность - равенство двух сторон и углов при основании.

    Иногда встречается вопрос о том, существует ли треугольник с заданными сторонами. На самом деле вас спрашивают, подходит ли данное описание под основные виды. Например, если сумма двух сторон меньше третьей, то в реальности такой фигуры не существует вообще. Если в задании просят найти косинусы углов треугольника со сторонами 3,5,9, то здесь очевидный можно объяснить без сложных математических приемов. Предположим, вы хотите из пункта A попасть в пункт B. Расстояние по прямой равно 9 километрам. Однако вы вспомнили, что необходимо зайти в пункт C в магазин. Расстояние от А до С равно 3 километрам, а от С до В - 5. Таким образом получается, что, двигаясь через магазин, вы пройдете на один километр меньше. Но так как пункт C не расположен на прямой AB, то вам придется пройти лишнее расстояние. Здесь возникает противоречие. Это, конечно, условное объяснение. Математика знает не один способ доказательства того, что все виды треугольников подчиняются основному тождеству. Оно гласит о том, что сумма двух сторон больше длины третьей.

    Любой вид обладает следующими свойствами:

    1) Сумма всех углов равняется 180 градусам.

    2) Всегда существует ортоцентр - точка пересечения всех трех высот.

    3) Все три медианы, проведенные из вершин внутренних углов, пересекаются в одном месте.

    4) Вокруг любого треугольника можно описать окружность. Также можно вписать круг так, чтобы он имел только три точки соприкосновения и не выходил за внешние стороны.

    Теперь вы познакомились с основными свойствами, которыми обладают различные виды треугольников. В будущем важно понимать, с чем вы имеете дело при решении задачи.

    Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

    Какая фигура называется треугольником?

    Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

    Различия в названиях по углам

    Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

    • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
    • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
    • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

    Различия в названиях по сторонам

    В зависимости от особенностей сторон выделяют такие виды треугольников:

      общий случай — разносторонний, в котором все стороны имеют произвольную длину;

      равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

      равносторонний, длины всех его сторон одинаковые.

    Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

    Свойства, общие для всех треугольников

    1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
    2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
    3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
    4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

    Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

    Свойства равнобедренного треугольника

    • Углы, которые прилегают к основанию, равны.
    • Высота, которая проведена к основанию, является также медианой и биссектрисой.
    • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

    Свойства равностороннего треугольника

    Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

    • Все его углы равны друг другу и имеют значение 60º.
    • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

    Свойства прямоугольного треугольника

    • Два острых угла дают в сумме значение в 90º.
    • Длина гипотенузы всегда больше, чем у любого из катетов.
    • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
    • Этому же значению равен катет, если он лежит напротив угла в 30º.
    • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н 2 = 1/а 2 + 1/в 2 . Здесь: а, в — катеты, н — высота.

    Задачи с разными видами треугольников

    №1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

    Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

    Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

    Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

    Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

    №2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

    Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

    н = а * √3 / 2, где н — высота, а — сторона.

    Подстановка и вычисление дают такой результат: н = 6 √3 (см).

    Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

    Ответ: высота равна 6 √3 см.

    №3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

    Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

    Ответ: угол Р равен 60º.

    №4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

    Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

    Ответ: углы равны 70º, 70º, 40º.

    №5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

    Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

    Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

    Треугольник — это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами (а, b, c), которые соответствуют заглавным буквам, обозначающим противоположные вершины (A, B, C).

    Если в треугольнике все три угла острые, то это остроугольный треугольник .

    Если в треугольнике один из углов прямой, то это прямоугольный треугольник . Стороны, образующие прямой угол, называются катетами . Сторона, противоположная прямому углу, называется гипотенузой .

    Если в треугольнике один из углов тупой, то это тупоугольный треугольник.

    Треугольник равнобедренный , если две его стороны равны; эти равные стороны называются боковыми, а третья сторона называется основанием треугольника.

    Треугольник равносторонний , если все его стороны равны.

    Основные свойства треугольников

    В любом треугольнике:

    1. Против большей стороны лежит больший угол, и наоборот.

    2. Против равных сторон лежат равные углы, и наоборот.
    В частности, все углы в равностороннем треугольнике равны.

    3. Сумма углов треугольника равна 180º .
    Из двух последних свойств следует, что каждый угол в равностороннем
    треугольнике равен 60º.

    4. Продолжая одну из сторон треугольника, получаем внешний
    угол. Внешний угол треугольника равен сумме внутренних углов,
    не смежных с ним.

    5. Любая сторона треугольника меньше суммы двух других сторон и больше
    их разности.

    Признаки равенства треугольников.

    Треугольники равны, если у них соответственно равны:

    A) две стороны и угол между ними;
    b) два угла и прилегающая к ним сторона;
    c) три стороны.

    Признаки равенства прямоугольных треугольников.

    Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

    1) равны их катеты;
    2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
    3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
    4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
    5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

    Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника . Ортоцентр остроугольного треугольника расположен внутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

    Медиана — это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся его центром тяжести . Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

    Свойство медианы равнобедренного треугольника. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.

    Биссектриса — это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся центром вписанной окружности . Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанной окружности. В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном — снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанной и центр вписанной окружности совпадают только в равностороннем треугольнике.

    Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.

    Свойство средней линии треугольника . Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине.

    Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. c 2 = a 2 + b 2 .

    Доказательства теоремы Пифагора можно посмотреть здесь.

    Теорема синусов . Стороны треугольника пропорциональны синусам противолежащих углов.

    Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

    Доказательства теоремы синусов и теоремы косинусов можно посмотреть здесь .

    Теорема о сумме углов в треугольнике. Сумма внутренних углов треугольника равна 180°.

    Теорема о внешнем угле треугольника . Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

    Треугольники

    Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки -- его сторонами.

    Виды треугольников

    Треугольник называется равнобедренным, если у него две сторны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

    Треугольник, у которого все сторны равны, называется равносторонним или правильным.

    Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.

    Треугольник называется остроугольным, если все три его угла - острые, то есть меньше 90°.

    Треугольник называется тупоугольным, если один из его углов - тупой, то есть больше 90°.

    Основные линии треугольника

    Медиана

    Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

    Свойства медиан треугольника

      Медиана разбивает треугольник на два треугольника одинаковой площади.

      Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

      Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

    Биссектриса

    Биссектриса угла - это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

    Свойства биссектрис треугольника

    Высота

    Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.

    Свойства высот треугольника

      В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

      В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Срединный перпендикуляр

    Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

    Свойства серединных перпендикуляров треугольника

      Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

      Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника .

    Средняя линия

    Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

    Свойство средней линии треугольника

    Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

    Формулы и соотношения

    Признаки равенства треугольников

    Два треугольника равны, если у них соответственно равны:

      две стороны и угол между ними;

      два угла и прилежащая к ним сторона;

      три стороны.

    Признаки равенства прямоугольных треугольников

    Два прямоугольных треугольника равны, если у них соответственно равны:

      гипотенуза и острый угол;

      катет и противолежащий угол;

      катет и прилежащий угол;

      два катета ;

      гипотенуза и катет .

    Подобие треугольников

    Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

      два угла одного треугольника равны двум углам другого треугольника;

      две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

      три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

    В подобных треугольниках соответствующие линии (высоты , медианы , биссектрисы и т. п.) пропорциональны.

    Теорема синусов

    Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности :

    Теорема косинусов

    Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

    a 2 = b 2 + c 2 - 2bc cos

    Формулы площади треугольника

      Произвольный треугольник

    a, b, c - стороны; - угол между сторонамиa и b ;- полупериметр;R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .