Болезни Военный билет Призыв

Виды гидратов оксидов кислоты основания амфотерные гидроксиды. Амфотерные оксиды и гидроксиды: физические и химические свойства, получение, применение. Взаимодействие с амфотерными оксидами

Амфотерными являются следующие оксиды элементов главных подгрупп: BeO, A1 2 O 3 , Ga 2 O 3 , GeO 2 , SnO, SnO 2 , PbO, Sb 2 O 3 , РоO 2 . Амфотерными гидроксидами являются следующие гидроксиды элементов глав­ных подгрупп: Ве(ОН) 2 , А1(ОН) 3 , Sc(OH) 3 , Ga(OH) 3 , In(OH) 3 , Sn(OH) 2 , SnО 2 ·nH 2 О, Pb(OH) 2 , PbО 2 ·nH 2 О.

Основный характер оксидов и гидроксидов элементов одной подгруппы усили­вается с возрастанием порядкового номера элемента (при сравнении оксидов и гидроксидов элементов в одной и той же степени окисления). Например, N 2 O 3 , Р 2 O 3 , As 2 O 3 – кис­лотные оксиды, Sb 2 O 3 – амфотерный оксид, Bi 2 O 3 – основ­ный оксид.

Рассмотрим амфотерные свойства гидрокси­дов на примере соединений бериллия и алюминия.

Гидроксид алюминия проявляет амфотерные свойства, реагирует как с основаниями, так и с кислотами и образует два ряда солей:

1) в которых элемент А1 нахо­дится в форме катиона;

2А1(ОН) 3 + 6НС1 = 2А1С1 3 + 6Н 2 O А1(ОН) 3 + 3Н + = А1 3+ + 3Н 2 O

В этой реакции А1(ОН) 3 выполняет функцию основа­ния, образуя соль, в которой алюминий является катио­ном А1 3+ ;

2) в которых элемент А1 входит в сос­тав аниона (алюминаты).

А1(ОН) 3 + NaOH = NaA1O 2 + 2Н 2 O.

В этой реакции А1(ОН) 3 выполняет функцию кисло­ты, образуя соль, в которой алюминий входит в состав аниона AlO 2 – .

Формулы растворенных алюминатов записывают упро­щенно, имея ввиду продукт, образующийся при обезвожи­вании соли.

В химической литературе можно встретить разные фор­мулы соединений, образующихся при растворении гидроксида алюминия в щёлочи: NaA1О 2 (метаалюминат натрия), Na тетрагидроксоалюминат натрия. Эти формулы не противоречат друг другу, так как их различие связано с разной степенью гидратации этих соединений: NaA1О 2 ·2Н 2 О – это иная запись Na. При растворении А1(ОН) 3 в избытке щелочи образуется тетрагидроксоалюминат натрия:

А1(ОН) 3 + NaOH = Na.

При спекании реагентов – образуется метаалюминат натрия:

А1(ОН) 3 + NaOH ==== NaA1О 2 + 2Н 2 О.

Таким образом, можно говорить, что в водных растворах присутствуют одновременно такие ионы, как [А1(ОН) 4 ] – или [А1(ОН) 4 (Н 2 О) 2 ] – (для случая, когда составляется уравнение реакции с учетом гидратной оболочки), а запись A1О 2 – явля­ется упрощенной.

Из-за способности реагировать со щелочами гидроксид алюминия, как правило, не получают действием щелочи на растворы солей алюминия, а используют раствор аммиака:

A1 2 (SО 4) 3 + 6 NH 3 ·Н 2 О = 2А1(ОН) 3 + 3(NH 4) 2 SО 4 .

Среди гидроксидов элементов второго периода амфотерные свойства проявляют гидроксид бериллия (сам бериллий проявляет диагональное сходство с алюминием).

С кислотами:

Ве(ОН) 2 + 2НС1 = ВеС1 2 + 2Н 2 О.

С основаниями:

Ве(ОН) 2 + 2NaOH = Na 2 (тетрагидроксобериллат натрия).

В упрощенном виде (если представить Ве(ОН) 2 как кис­лоту Н 2 ВеО 2)

Ве(ОН) 2 + 2NaOH(конц.горяч.) = Na 2 BeО 2 + 2H 2 О.

бериллат Na

Гидроксиды элементов побочных подгрупп, соответствующие высшим степеням окисления, чаще всего имеют кислотные свойства: например, Мn 2 О 7 – НМnО 4 ; CrО 3 – H 2 CrО 4 . Для низших оксидов и гидроксидов харак­терно преобладание основных свойств: СrО – Сr(ОН) 2 ; МnО – Mn(OH) 2 ; FeO – Fe(OH) 2 . Промежуточные соедине­ния, соответствующие степеням окисления +3 и +4, часто проявляют амфотерные свойства: Сr 2 О 3 – Cr(OH) 3 ; Fe 2 О 3 – Fe(OH) 3 . Проиллюстрируем эту закономерность на примере соеди­нений хрома (таблица 9).

Таблица 9 – Зависимость характера оксидов и соответствующих им гидроксидов от степени окисления элемента

Взаимодействие с кислотами приводит к образованию соли, в которой элемент хром находится в форме катиона:

2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O.

сульфат Cr(III)

Взаимодействие с основаниями приводит к образованию соли, в которой элемент хром входит в состав аниона:

Cr(OH) 3 + 3NaOH = Na 3 + 3H 2 О.

гексагидроксохромат (III) Na

Оксид и гидроксид цинка ZnO, Zn(OH) 2 – типично ам­фотерные соединения, Zn(OH) 2 легко растворяется в раство­рах кислот и щелочей.

Взаимодействие с кислотами приводит к образованию соли, в которой элемент цинк находится в форме катиона:

Zn(OH) 2 + 2HC1 = ZnCl 2 + 2H 2 O.

Взаимодействие с основаниями приводит к образованию соли, в которой элемент цинк находится в составе аниона. При взаимодействии со щелочами в растворах образуются тетрагидроксоцинкаты, при сплавлении – цинкаты:

Zn(OH) 2 + 2NaOH = Na 2 .

Или при сплавлении:

Zn(OH) 2 + 2NaOH = Na 2 ZnO 2 + 2Н 2 O.

Получают гидроксид цинка аналогично гидроксиду алю­миния.

Тема: Основные классы соединений, их свойства и типичные реакции

Урок: Амфотерные гидроксиды

С греческого языка слово «amphoteros» переводится как «тот и другой». Амфотерность - это двойственность кислотно-основных свойств вещества. Амфотерными называют гидроксиды, которые в зависимости от условий могут проявлять как кислотные, так и основные свойства.

Примером амфотерного гидроксида может служить гидроксид цинка. Формула этого гидроксида в основной форме - Zn(OH) 2 . Но можно записать формулу гидроксида цинка в кислотной форме, поставив на первое место атомы водорода, как в формулах неорганических кислот: H 2 ZnO 2 (Рис. 1). Тогда ZnO 2 2- будет кислотным остатком с зарядом 2-.

Рис. 1. Формулы гидроксида цинка

Особенностью амфотерного гидроксида является то, что в нем мало различаются по прочности связи О-Н и Zn-O. Отсюда и двойственность свойств. В реакциях с кислотами, готовыми отдать катионы водорода, гидроксиду цинка выгодно разрывать связь Zn-O, отдавая ОН-группу и выступая в роли основания. В результате таких реакций образуются соли, в которых цинк является катионом, поэтому их называют солями катионного типа:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

(основание)

В реакциях со щелочами гидроксид цинка выступает в роли кислоты, отдавая водород. При этом образуются соли анионного типа (цинк входит в состав кислотного остатка - аниона цинката). Например, при сплавлении гидроксида цинка с твердым гидроксидом натрия образуется Na 2 ZnO 2 - средняя соль анионного типа цинкат натрия:

H 2 ZnO 2 + 2NaOH (ТВ.) = Na 2 ZnO 2 + 2H 2 O

(кислота)

При взаимодействии с растворами щелочей амфотерные гидроксиды образуют растворимые комплексные соли. Например, при взаимодействии гидроксида цинка с раствором гидроксида натрия образуется тетрагидроксоцинкат натрия:

Zn(OH) 2 + 2NaOH = Na 2

2- - сложный анион, который принято заключать в квадратные скобки.

Таким образом, амфотерность гидроксида цинка обусловлена возможностью существования ионов цинка в водном растворе в составе как катионов, так и анионов. Состав этих ионов зависит от кислотности среды. В щелочной среде устойчивы анионы ZnO 2 2- , а в кислотной среде устойчивы катионы Zn 2+ .

Амфотерные гидроксиды - нерастворимые в воде вещества, и при нагревании они разлагаются на оксид металла и воду:

Zn(OH) 2 = ZnO + H 2 O

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

Степень окисления металла в гидроксиде и оксиде должна быть одинаковой.

Амфотерные гидроксиды - нерастворимые в воде соединения, поэтому их можно получить по реакции обмена между раствором соли переходного металла и щелочью. Например, гидроксид алюминия образуется при взаимодействии растворов хлорида алюминия и гидроксида натрия:

AlCl 3 + 3NaOH = Al(OH) 3 ↓ + 3NaCl

При сливании данных растворов образуется белый желеподобный осадок гидроксида алюминия (Рис. 2).

Но при этом нельзя допустить избытка щелочи, ведь амфотерные гидроксиды растворяются в щелочах. Поэтому вместо щелочи лучше использовать водный раствор аммиака. Это слабое основание, в котором гидроксид алюминия не растворяется. При взаимодействии хлорида алюминия с водным раствором аммиака образуется гидроксид алюминия и хлорид аммония:

AlCl 3 + 3NH 3 . H 2 O = Al(OH) 3 ↓ + 3NH 4 Cl

Рис. 2. Образование осадка гидроксида алюминия

Список литературы

  1. Новошинский И. И., Новошинская Н. С. Химия. Учебник для 10 класса общеобр. учрежд. Профильный уровень. - М.: ООО «ТИД «Русское слово - РС», 2008. (§54)
  2. Кузнецова Н. Е., Литвинова Т. Н., Лёвкин А. Н. Химия: 11 класс: Учебник для учащихся общеобраз. учрежд. (профильный уровень): в 2-х ч. Ч. 2. М.: Вентана-Граф, 2008. (с. 110-111)
  3. Радецкий А.М. Химия. Дидактический материал. 10-11 классы. - М.: Просвещение, 2011.
  4. Хомченко И. Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

Основания - Это химическое соединение, способное образовывать ковалентную связь с протоном (основание Бренстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса)

Химические свойства оснований

Щелочи

Нерастворимые основания

Изменение окраски индикторов

фенолфталеин - малиновый

метилоранж - оранжевый

лакмус- синий

универсальный индикатор - от синего до фиолетового

не меняют

Взаимодействие с кислотами (реакция нейтрализации)

2NaOH+H2SO4=Na2SO4+2H2O2NaOH+H2SO4=Na2SO4+2H2O

Cu(OH)2+2HNO3=Cu(NO3)2+2H2OCu(OH)2+2HNO3=Cu(NO3)2+2H2O

Взаимодействие с кислотными оксидами

SO2+2KOH=K2SO3+H2O4SO2+2KOH=K2SO3+H2O4

Взаимодействие с амфотерными оксидами

Al2O3+6NaOH+3H2O=2Na3Al2O3+6NaOH+3H2O=2Na3 в растворе

Al2O3+2NaOH=2NaAlO2+H2OAl2O3+2NaOH=2NaAlO2+H2O в расплаве

Взаимодействие с солями

средними (правило Бертолле): 2NaOH+MgSO4=Mg(OH)2↓+Na2SO42NaOH+MgSO4=Mg(OH)2↓+Na2SO4

NaHCO3+NaOH=Na2CO3+H2ONaHCO3+NaOH=Na2CO3+H2O

Разложение при нагревании

не разлагаются, кроме LiOH:

2LiOH−→−−−−−800∘C,H2Li2O+H2O2LiOH→800∘C,H2Li2O+H2O

Cu(OH)2=CuO+H2OCu(OH)2=CuO+H2O

Взаимодействие с неметаллами

2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O

6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O

Методы получения оснований

1 . электролиз водных растворов солей активных металлов:

2NaCl+2H2O=2NaOH+H2+Cl22NaCl+2H2O=2NaOH+H2+Cl2

В ходе электролиза солей металлов, стоящих в ряду напряжения до алюминия, на катоде происходит восстановление воды с выделением газообразного водорода и гидроксид-ионов. Катионы металла, образованные в ходе диссоциации соли, образуют с полученными гидроксид-ионами основания.

2 . взаимодействие металлов с водой: 2Na+2H2O=2NaOH+H22Na+2H2O=2NaOH+H2 Этот метод не находит практического применения ни в лаборатории, ни в промышленности

3 . взаимодействие оксидов с водой: CaO+H2O=Ca(OH)2CaO+H2O=Ca(OH)2

4 . обменные реакции (можно получать и растворимые и нерастворимые основания): Ba(OH)2+K2SO4=2KOH+BaSO4↓Ba(OH)2+K2SO4=2KOH+BaSO4↓ CuCl2+2NaOH=Cu(OH)2↓+2NaNO3

Амфотерные соединения – это вещества, которые в зависимости от условий реакций проявляют кислотные или основные свойства.

Ам­фо­тер­ные гид­рок­си­ды – нерас­тво­ри­мые в воде ве­ще­ства, и при на­гре­ва­нии они раз­ла­га­ют­ся на оксид ме­тал­ла и воду:

Zn(OH) 2 = ZnO + H 2 O

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

При­ме­ром ам­фо­тер­но­го гид­рок­си­да может слу­жить гид­рок­сид цинка. Фор­му­ла этого гид­рок­си­да в ос­нов­ной форме – Zn(OH) 2 . Но можно за­пи­сать фор­му­лу гид­рок­си­да цинка в кис­лот­ной форме, по­ста­вив на пер­вое место атомы во­до­ро­да, как в фор­му­лах неор­га­ни­че­ских кис­лот: H 2 ZnO 2 (Рис. 1). Тогда ZnO 2 2- будет кис­лот­ным остат­ком с за­ря­дом 2-.

Осо­бен­но­стью ам­фо­тер­но­го гид­рок­си­да яв­ля­ет­ся то, что в нем мало раз­ли­ча­ют­ся по проч­но­сти связи О-Н и Zn-O. От­сю­да и двой­ствен­ность свойств. В ре­ак­ци­ях с кис­ло­та­ми, го­то­вы­ми от­дать ка­ти­о­ны во­до­ро­да, гид­рок­си­ду цинка вы­год­но раз­ры­вать связь Zn-O, от­да­вая ОН-груп­пу и вы­сту­пая в роли ос­но­ва­ния. В ре­зуль­та­те таких ре­ак­ций об­ра­зу­ют­ся соли, в ко­то­рых цинк яв­ля­ет­ся ка­ти­о­ном, по­это­му их на­зы­ва­ют со­ля­ми ка­ти­он­но­го типа:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

Амфотерные оксиды - солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от III до IV, за исключением ZnO, BeO, SnO, PbO.

Амфотерные оксиды обладают двойственной природой: они могут взаимодействовать с кислотами и с основаниями (щелочами):

Al 2 O 3 + 6HCl = 2AlCl 3 + 3 H 2 O,

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na.

Типичные амфотерные оксиды: H 2 O, BeO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 и др.

9. Химическая термодинамика. Понятия системы, энтропия, энтальпия, тепловой эффект химической реакции, закон Гесса и его следствие. Эндотерм и Экзотерм реакции, 1 и 2 законы термодинамики, Скорость химической реакции (факторы влияющие), правило Вант- Гоффа, уравнение Вант- Гоффа.

Химическая термодинамика – наука, изучающая условия устойчивости систем и законы.

Термодинамика – наука о макросистемах.

Термодинамическая система – макроскопическая часть окружающего мира, в которой протекают различные физические и химические процессы.

Дисперсной системой называется гетерогенная система, в которой мелкие частицы одной фазы равномерно распределены в объеме другой фазы.

Энтропия (От греческого entropia) - поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтальпия (тепловая функция, теплосодержание) - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении.

Тепловые эффекты принято указывать в термохимических уравнениях химических реакций, используя значения энтальпии (теплосодержания) системы ΔН.

Если ΔН < 0, то теплота выделяется, т.е. реакция является экзотермической.

Для эндотермических реакций ΔН > 0.

Тепловой эффект химической реакции - это выделенная или поглощенная теплота при данных количествах реагирующих веществ.

Тепловой эффект реакции зависит от состояния веществ.

Рассмотрим термохимическое уравнение реакции водорода с кислородом:

2H 2 (г )+ O 2 (г )= 2H 2 O (г ), ΔH =−483.6 кДж

Эта запись означает, что при взаимодействии 2 моль водорода с 1 моль кислорода образуются 2 моль воды в газообразном состоянии. При этом выделяется 483.6(кДж) теплоты.

Закон Гесса - Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Следствия из закона Гесса:

Тепловой эффект обратной реакции равен тепловому эффекту прямой реакции с обратным знаком, т.е. для реакций

отвечающие им тепловые эффекты связаны равенством

2. Если в результате ряда последовательных химических реакций система приходит в состояние, полностью совпадающее с исходным (круговой процесс), то сумма тепловых эффектов этих реакций равна нулю, т.е. для ряда реакций

сумма их тепловых эффектов

Под энтальпией образования понимают тепловой эффект реакции образования 1 моля вещества из простых веществ. Обычно используют стандартные энтальпии образования. Их обозначают или (часто один из индексов опускают; f – от англ. formation).

Первое начало термодинамики - Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах -джоулях (как и энергию).

где ΔU - изменение внутренней энергии, A - работа внешних сил, Q - количество теплоты, переданной системе.

Второе начало термодинамики - Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза.

Уравнение, которое описывает это правило, следующее:{\displaystyle ~V_{2}=V_{1}\cdot \gamma ^{\frac {T_{2}-T_{1}}{10}}}

где V 2 – скорость протекания реакции при температуре t 2 , а V 1 – скорость протекания реакции при температуре t 1 ;

ɣ - температурный коэффициент скорости реакции. (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Эндотерми́ческие реа́кции - химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения{\displaystyle \Delta H>0}{\displaystyle \Delta U>0}, таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

К эндотермическим реакциям относятся:

    реакции восстановления металлов из оксидов,

    электролиза (поглощается электрическая энергия),

    электролитической диссоциации (например, растворение солей в воде),

    ионизации,

    взрыв воды-подводимое к малому количеству воды большое количество тепла тратится на мгновенный нагрев и фазовый переход жидкости в перегретый пар,при этом внутреняя энергия увеличивается и проявляется в виде двух энергий пара-внутримолекулярной тепловой и межмолекулярной потенциальной.

    фотосинтеза.

Экзотермическая реакция - химическая реакция, сопровождающаяся выделением теплоты. Противоположна эндотермической реакции.

Ступень обучения: III (X класс).

Характер ориентации: средний уровень.

Ведущий принцип: деятельностный, коммуникативный.

Метод–доминанта: проблемно-поисковый.

Триединая цель урока:

1) Образовательный аспект

  • Актуализировать и обобщить ранее полученные учащимися знания об основных классах неорганических соединений.
  • Закрепить умения учащихся составлять уравнения химических реакций с участием амфотерных гидроксидов.
  • Продолжить формирование у учащихся понятия «амфотерности».

2) Развивающий аспект

  • Показать возможность применения своих знаний при решении качественных задач и выполнении упражнений.
  • Продолжить формирование навыков познавательной деятельности, путем объяснения поставленного перед учащимися проблемного опыта.
  • Продолжить формирование умения сравнивать, анализировать и сопоставлять результаты проведенных опытов;
  • Формирование умения проводить аналогии между различными объектами;
  • Развитие внимания и памяти.
  • Развитие экспериментальных навыков.

3) Воспитывающий аспект

  • Формирование научного мировоззрения.
  • Формирование культуры учебного труда.
  • Обратить внимание на эстетику учебной и трудовой деятельности при выполнении опытов.
  • Воспитание культуры общения, умения взаимодействовать в паре;
  • Формирование у учащихся культуры умственного труда, аккуратности в выполнении заданий и написании формул.
  • Воспитание человека как части природы и общества, подчиняющегося их законам.

Оборудование и реактивы: растворы хлорида цинка, гидроксида натрия, аммиака, хлорида алюминия, соляной кислоты, хлорида магния, хлорида натрия; пробирки.

Ход урока

1. Организационный момент

2. Повторение пройденного материала

Индивидуальный опрос у доски:

Первый ученик – « Химические свойства кислот»
- второй ученик – « Химические свойства оснований».

В это время класс выполняет задание: с какими из перечисленных веществ будет реагировать гидроксид натрия, а с какими соляная кислота?

Написать возможные уравнения реакций.

Вещества: HNO 3 , CaO , CO 2 , СuSO 4 , Cu(OH) 2 , P 2 O 5 , ZnO, AgNO 3 .

Затем один ученик выполняет это задание на доске, а остальные проверяют.

На доске:

1.

NaOH + HNO 3 = NaNO 3 + H 2 O
2 NaOH + CO 2 = Na 2 CO 3 + H 2 O
2 NaOH + CuSO 4 = Na 2 SO 4 + Cu(OH) 2

2 NaOH + ZnO Na 2 ZnO 2 + H 2 O
6 NaOH + P 2 O 5 = 2Na 3 PO 4 + 3H 2 O

2. 2HCl + CaO = CaCl 2 + H 2 O
2HCl + Cu(OH) 2 = CuCl 2 + 2H 2 O
2HCl + ZnO = ZnCl 2 + H 2 O
HCl + AgNO 3 = AgCl + HNO 3

3. Изучение нового материала

Тема урока: «Амфотерные гидроксиды».

Девиз урока: «Химия – наука полутонов».
Э.Е. Нифантьев.

Актуализация знаний

Учитель: Тема нашего урока «Амфотерные гидроксиды». Наша задача знать, какие соединения называют амфотерными гидроксидами и каковы их химические свойства; понять, в чем причина амфотерности; уметь писать уравнения реакций, отражающих химические свойства амфотерных гидроксидов.

Итак, давайте вспомним, что вы уже знаете об «амфотерности».

Ученик: Амфотерные соединения проявляют одновременно и основные, и кислотные свойства.

Учитель: Мы уже познакомились с амфотерными оксидами. Скажите, пожалуйста, какие элементы образуют эти соединения?

Ученик: Металлы в степени окисления +3 и +4,а также металлы, металлические свойства которых выражены неярко (в периодической системе элементов они находятся между металлами и неметаллами, вдоль диагонали). Например: Be, Zn, Ge и др.

Физические свойства амфотерных гидроксидов

Учитель: Амфотерные гидроксиды – это нерастворимые в воде твердые вещества, как правило, белого цвета.

Получение

Учитель: Предположите способ получения амфотерных гидроксидов, помня, что они не растворимы в воде.

Ученик: Реакцией обмена между растворимой солью соответствующего металла и щелочью. (Демонстрационный эксперимент)

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl
Zn 2+ + 2OH - = Zn (OH) 2

Учитель: Но! Избыток щелочи может растворить образовавшийся осадок, поэтому берут слабое основание – NH 3 * H 2 O (гидроксид аммония или гидрат аммиака).

Химические свойства

Учитель: Известная мудрость гласит: «Опыт- путь к познанию». Поэтому химические свойства амфотерных гидроксидов вы определите, выполняя лабораторный опыт в парах.

Задание : получить гидроксид алюминия и определить его химические свойства. Для этого у Вас на столах есть растворы хлорида алюминия, аммиака, соляной кислоты и гидроксида натрия. Помните о соблюдении правил техники безопасности.Запишите уравнения химических реакций.

Ученики выполняют опыт, записывают в тетрадях уравнения реакций.

Один ученик выходит к доске и записывает все уравнения и объясняет наблюдаемые явления.

AlCl 3 + 3NH 3 * H 2 O = Al(OH) 3 + 3NH 4 Cl

Вывод : гидроксид алюминия взаимодействует и с кислотами, и с основаниями, т.е. проявляет амфотерные свойства.

Учитель: В чем же причина амфотерности этих соединений?

Для того чтобы ответить на этот вопрос, рассмотрим их диссоциацию.

В водных растворах амфотерные гидроксиды практически не диссоциируют, но в растворах кислот и щелочей могут диссоциировать двумя способами.

Учитель. Нужно отметить, что соли анионного типа, образующиеся при взаимодействии амфотерного гидроксида со щелочью, устойчивы в щелочной среде, но разрушаются при подкислении растворов.

Na + 4HCl = NaCl + AlCl 3 + 4H 2 O

Амфотерные гидроксиды, как и нерастворимые основания, при нагревании разлагаются:

2Al(OH) 3 Al2O 3 + 3H 2 O

4. Закрепление

Экспериментальная задача. Даны три пробирки с растворами хлоридов натрия, магния и алюминия. Как определить, в какой пробирке какое вещество?

Один участник выходит к демонстрационному столу и выполняет опыт.

5. Подведение итогов урока

Учитель: Итак, подводя итоги нашего урока, я хотела бы сказать, что амфотерность - категория не только химическая, но и философская: с греческого языка слово «amphoteros» переводится как « тот и другой », то есть это понятие означает единство противоположностей.

А это уже один из основных законов природы – закон единства и борьбы противоположностей, который проявляется практически в каждой химической реакции: кислота и основание, окислитель и восстановитель, донор и акцептор и так далее.

Этот закон объективен, его нельзя отменить, можно только воспользоваться им для объяснения явлений.

Мы часто в жизни сталкиваемся с проявлениями этого закона: в технике – противоположно заряженные частицы притягиваются; в человеческих отношениях – часто очень разные люди сближаются, они как будто дополняют друг друга. В жизни всегда борются добро и зло, в каждом человеке обязательно присутствуют плохие и хорошие черты. Поэтому не бывает человека идеального, только хорошего, а в самом падшем, плохом человеке всегда можно найти что-то доброе, светлое. Об этом надо всегда помнить и относиться к окружающим нас людям с пониманием, терпимостью к чужим недостаткам.

Тема нашего сегодняшнего урока является еще одним подтверждением связи химии с нашей жизнью. И теперь давайте вернемся к девизу этого урока: « Химия – это наука полутонов ». Как вы можете объяснить это выражение?

Ученик: Это значит, что нельзя провести четкую границу между простыми веществами металлами и неметаллами, разными классами соединений, органическими и неорганическими веществами. Все подчиняется единству материального мира.

6. Домашнее задание

Параграф 28.3, задания: 1,2,3 (учебник «Химия 10 класс» авторы: И.И.Новошинский, Н.С.Новошинская)

Дополнительное задание к уроку (если останется время)

Осуществить превращения:

Al- 1 - Al 2 O 3 - 2 -- NaAlO 2 - 3 -- Al (OH) 3 - 4 -- Al 2 O 3

1. 4Al + 3O 2 = 2Al 2 O 3

2. Al 2 O 3 + Na 2 O 2NaAlO 2

3. NaAlO 2 + HCl + H 2 O = NaCl + Al(OH) 3

4. 2Al(OH) 3 Al 2 O 3 +3H 2 O

AlCl 3 -- 1 -- Al(OH) 3 - 2 --- Na -- 3 -- AlCl 3

1. AlCl 3 + 3NaOH = 3NaCl + Al(OH) 3 |

2. Al(OH) 3 + NaOH = Na[ Al(OH) 4 ]

3. Na[ Al(OH) 4 ]+ 4HCl = NaCl + AlCl 3 + 4H 2 O

1) В реакциях с кислотами эти соединения проявляют основные свойства, как обычные основания:

Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O; Zn(OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями амфотерные гидроксиды проявляют кислотные свойства и образуют соли. В этом случае амфотерный металл входит в состав аниона кислоты. Амфотерные металлы могут образовывать разные кислотные остатки в зависимости от условий проведения реакции:

В водном растворе:

Al(OH) 3 + 3NaOH → Na 3 ; Zn(OH) 2 + 2NaOH →Na 2 ,

При сплавлении твёрдых веществ:

Al(OH) 3 + NaOH → NaAlO 2 + 2H 2 O; Zn(OH) 2 + 2NaOH →Na 2 ZnO 2 + 2H 2 O

Оксиды

Оксиды – это вещества, состоящие из двух элементов, один из которых кислород, который находится в степени окисления -2. Они делятся по своим свойствам на основные, амфотерные и кислотные.

Основные оксиды – это оксиды металлов с основными свойствами. К ним относятся большинство оксидов металлов со степенью окисления +1 и +2.

Амфотерные оксиды – в зависимости от условий могут проявлять основные или кислотные свойства. К ним относятся оксиды большинства металлов со степенью окисления +3 и +4, а также некоторые оксиды металлов со степенью окисления +2, например Al 2 O 3 , Cr 2 O 3 , ZnO, BeO.

Кислотные оксиды – это оксиды неметаллов и оксиды металлов, в которых степень окисления металла +5 и выше. Эти оксиды обладают кислотными свойствами и образуют кислоты.

Свойства основных оксидов

1) Основные оксиды реагируют с водой, если образуется растворимый гидроксид:

CaO + H 2 O → Ca(OH) 2 ; Na 2 O + H 2 O → 2NaOH.

2) Основные оксиды могут реагировать с кислотными оксидами:

CaO + SO 3 → CaSO 4 ; Na 2 O + CO 2 → Na 2 CO 3 .

3) Основные оксиды реагируют с кислотами:

MgO + 2HCl → MgCl 2 + H 2 O; Na 2 O + 2HNO 3 → 2NaNO 3 + H 2 O.

Свойства амфотерных оксидов

1) С кислотами они реагируют, как обычные основные оксиды:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O; ZnO + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями они проявляют кислотные свойства и образуют такие же кислотные анионы, как и амфотерные гидроксиды:

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3 ;

ZnO + 2NaOH + H 2 O → Na 2 .

При сплавлении твёрдых веществ:

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O; ZnO + 2NaOH →Na 2 ZnO 2 + H 2 O.

Свойства кислотных оксидов

1) Реагируют с водой, если получается растворимая кислота:

SO 3 + H 2 O → H 2 SO 4 ; P 2 O 5 + 3H 2 O → 2H 3 PO 4 .

2) Кислотные оксиды могут реагировать с основными оксидами:

SO 3 + MgO → CaSO 4 ; CO 2 + CaO → CaCO 3 .


3) Кислотные оксиды реагируют с основаниями:

SO 3 + NaOН→ Na 2 SO 4 + H 2 O; CO 2 + Ca(OН) 2 → CaCO 3 + H 2 O.

Соли

Соли – это вещества, при первичной диссоциации которых не образуются ни ионы Н + , ни ионы ОН - . Это продукты взаимодействия кислот и оснований.

Например: NaCl=Na + +Cl - ;

Ca(HCO 3) 2 =Ca 2+ +2HCO 3 - ;

AlOH(NO 3) 2 =AlOH 2+ +2NO 3 -

Средние соли состоят из анионов и катионов, которые не содержат Н + и ОН - , например: Na 2 SO 4 – сульфат натрия, CaCO 3 – карбонат кальция. Кислые соли содержат катион водорода Н + , например: NaHCO 3 – гидрокарбонат натрия. Основные соли содержат анион ОН - , например (CaOH) 2 CO 3 – гидроксокарбонат кальция.

Для химических свойств всех солей характерны реакции обмена.

1) Соли могут реагировать с кислотами:

а) Сильная кислота вытесняет слабую кислоту из её соли.

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓.

б) Многоосновная кислота может реагировать со своей средней солью с образованием кислых солей.

Na 2 CO 3 + H 2 CO 3 → 2NaHCO 3 ; CuSO 4 + H 2 SO 4 → Cu(HSO 4) 2 .

2) Растворимые соли могут реагировать с растворимыми основаниями, если в результате реакции получится нерастворимое вещество:

2NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaOH.

3) Две растворимые соли могут реагировать друг с другом, если в результате реакции получится нерастворимое вещество:

NaCl + AgNO 3 → NaNO 3 + AgCl↓.

4) Соли могут реагировать с металлами. В этих реакциях активный металл вытесняет менее активный из его соли.