Болезни Военный билет Призыв

Какое движение представляет собой колебание. Виды колебаний в физике и их характеристика. По физической природе

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Тема данного урока: «Колебательное движение. Свободные колебания. Колебательные системы». Вначале дадим определение нового вида движения, который мы начинаем изучать, - колебательного движения. Рассмотрим в качестве примера колебания пружинного маятника и определим понятие свободных колебаний. Также изучим, что такое колебательные системы, и обсудим условия, необходимые для существования колебаний.

Колебание - это периодическое изменение любой физической величины: колебания температуры, колебания цвета светофора и т. д. (рис. 1).

Рис. 1. Примеры колебаний

Колебания - самый распространенный вид движения в природе. Если касаться вопросов, связанных с механическим движением, то это самый распространенный вид механического движения. Обычно говорят так: движение, которое с течением времени полностью или частично повторяется, называется колебанием . Механические колебания - это периодические изменение физических величин, характеризующих механическое движение: положения тела, скорости, ускорения.

Примеры колебаний: колебание качелей, шевеление листьев и качание деревьев под воздействием ветра, маятник в часах, движение человеческого тела.

Рис. 2. Примеры колебаний

Наиболее распространенными механическими колебательными системами являются:

  • Грузик, закрепленный на пружине - пружинный маятник . Сообщая маятнику начальную скорость, его выводят из состояния равновесия. Маятник совершает колебания вверх-вниз. Для совершения колебаний в пружинном маятнике имеет значение количество пружин и их жесткость.

Рис. 3. Пружинный маятник

  • Математический маятник - твердое тело, подвешенное на длинной нити, совершающее колебание в поле тяготения Земли.

Рис. 4. Математический маятник

Условия существования колебаний

  • Наличие колебательной системы. Колебательная система - это система, в которой могут существовать колебания.

Рис. 5. Примеры колебательных систем

Рис. 6. Точка равновесия

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное. Устойчивое: когда система стремится вернуться в первоначальное положение при малом внешнем воздействии. Именно наличие устойчивого равновесия является важным условием того, что в системе могут происходить колебания.

  • Запасы энергии, которые приводят к тому, что совершаются колебания. Ведь колебания сами по себе не могут совершаться, мы должны вывести систему из равновесия, чтобы происходили эти колебания. То есть сообщить энергию этой системе, чтобы потом колебательная энергия превращалась в то движение, которое мы рассматриваем.

Рис. 7 Запасы энергии

  • Малое значение сил трения. Если эти силы будут большими, то о колебаниях речи идти не может.

Решение главной задачи механики в случае колебаний

Механические колебания - это один из видов механического движения. Главная задача механики - это определение положения тела в любой момент времени. Получим закон зависимости для механических колебаний.

Закон, который необходимо найти, мы постараемся угадать, а не вывести математически, потому что уровня знаний девятого класса недостаточно для строгих математических выкладок. В физике очень часто пользуются таким методом. Сначала пытаются предсказать справедливое решение, а потом его доказывают.

Колебания - это периодический или почти периодический процесс. Это значит, что закон - периодическая функция. В математике периодическими функциями являются или .

Закон не будет являться решением главной задачи механики, так как - безразмерная величина, а единицы измерения - метры. Усовершенствуем формулу, добавив перед синусом множитель, соответствующий максимальному отклонению от положения равновесия - амплитудное значение: . Обратите внимание, что единицами измерения времени являются секунды. Подумайте, что значит, например, ? Данное выражение не имеет смысла. Выражение под синусом должно измеряться в градусах или радианах. В радианах измеряется такая физическая величина, как фаза колебания - произведение циклической частоты и времени.

Свободные гармонические колебания описывает закон:

Используя это уравнение, можно найти положение колеблющегося тела в любой момент времени.

Энергия и равновесие

Исследуя механические колебания, особый интерес следует уделять понятию положения равновесия - необходимому условию наличия колебаний.

Существует три типа положений равновесия: устойчивое, неустойчивое и безразличное.

На рисунке 8 изображен шарик, который находится в сферическом желобе. Если вывести шарик из положения равновесия, на него будут действовать следующие силы: сила тяжести , направленная вертикально вниз, сила реакции опоры , направленная перпендикулярно касательной по радиусу. Векторная сумма этих двух сил будет равнодействующей, которая направлена обратно к положению равновесия. То есть шарик будет стремится вернуться в положение равновесия. Такое положение равновесия называется устойчивым .

Рис. 8. Устойчивое равновесие

Положим шарик на выпуклый сферический желоб и немного выведем его из положения равновесия (рис. 9). Сила тяжести по-прежнему направлена вертикально вниз, сила реакции опоры по-прежнему перпендикулярна касательной. Но теперь равнодействующая сила направлена в сторону, противоположную начальному положению тела. Шарик будет стремится скатиться вниз. Такое положение равновесия называется неустойчивым .

Рис. 9. Неустойчивое равновесие

На рисунке 10 шарик находится на горизонтальной плоскости. Равнодействующая двух сил в любой точке на плоскости будет одинаковой. Такое положение равновесия называется безразличным .

Рис. 10. Безразличное равновесие

При устойчивом и неустойчивом равновесии шарик стремится занять такое положение, в котором его потенциальная энергия будет минимальной .

Всякая механическая система стремится самопроизвольно занять такое положение, в котором ее потенциальная энергия будет минимальной. Например, нам комфортнее лежать, чем стоять.

Итак, необходимо дополнить условие существования колебаний тем, что равновесие обязательно должно быть устойчивым.

Если данному маятнику, колебательной системе сообщили энергию, то колебания, происходящие в результате такого действия, будут называться свободными . Более распространенное определение: свободными называют колебания , которые происходят только под действием внутренних сил системы.

Свободные колебания еще называют собственными колебаниями данной колебательной системы, данного маятника. Свободные колебания являются затухающими. Они рано или поздно затухают, так как действует сила трения. В данном случае она хоть и малая величина, но не нулевая. Если никакая дополнительная сила не вынуждает двигаться тело, колебания прекращаются.

Уравнение зависимости скорости и ускорения от времени

Для того чтобы понять, меняются ли скорость и ускорение при колебаниях, обратимся к математическому маятнику.

Маятник вывели из положения равновесия, и он начинает совершать колебания. В крайних точках колебания скорость меняет свое направление, причем в точке равновесия скорость максимальная. Если меняется скорость, значит, у тела есть ускорение. Будет ли такое движение равноускоренным? Конечно, нет, так по мере увеличения (уменьшения) скорости меняется и ее направление. Это значит, что ускорение также будет меняться. Наша задача - получить законы, по которым будут меняться проекция скорости и проекция ускорения со временем.

Координата со временем меняется по гармоническому закону, по закону синуса или косинуса. Логично предположить, что скорость и ускорение также будут меняться по гармоническому закону.

Закон изменения координаты:

Закон, по которому будет меняться проекция скорости со временем:

Данный закон также является гармоническим, но если координата меняется со временем по закону синуса, то проекция скорости - по закону косинуса. Координата в положении равновесия равна нулю, скорость же в положении равновесия максимальная. И наоборот, там, где координата максимальная, скорость равна нулю.

Закон, по которому будет меняться проекция ускорения со временем:

Знак минус появляется, поскольку при приращении координаты возвращающая сила направлена в противоположную сторону. По второму закону Ньютона, ускорение направлено туда же, куда и результирующая сила. Итак, если координата растет, ускорение растет по модулю, но противоположно по направлению, и наоборот, о чем и говорит знак минус в уравнении.

Список литературы

  1. Кикоин А.К. О законе колебательного движения // Квант. - 1983. - № 9. - С. 30-31.
  2. Кикоин И.К., Кикоин А.К. Физика: учеб. для 9 кл. сред. шк. - М.: Просвещение, 1992. - 191 с.
  3. Черноуцан А.И. Гармонические колебания - обычные и удивительные // Квант. - 1991. - № 9. - С. 36-38.
  4. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «eduspb.com» ()
  3. Интернет-портал «physics.ru» ()
  4. Интернет-портал «its-physics.org» ()

Домашнее задание

  1. Что такое свободные колебания? Приведите несколько примеров таких колебаний.
  2. Вычислите частоту свободных колебаний маятника, если длина его нити 2 м. Определите, сколько времени будут длиться 5 колебаний такого маятника.
  3. Чему равен период свободных колебаний пружинного маятника, если жесткость пружины 50 Н/м, а масса груза 100 г?

Лабораторная работа №3

«Определение коэффицента упругости пружины с помощью пружинного маятника»

УДК 531.13(07)

Рассматриваются законы колебательного движения на примере пружинного маятника. Даны методические указания к выполнению лабораторной работы по определению коэффициента жёсткости пружины динамическим методами. Дан разбор типовых задач по теме «Гармонические колебания. Сложение гармонических колебаний.

Теоретическое введение

Колебательное движение является одним из наиболее распространённых движений в природе. С ним связаны звуковые явления, переменный ток, электромагнитные волны. Колебания совершают отдельные части самых разнообразных машин и приборов, атомы и молекулы в твёрдых телах, жидкостях и газах, сердечные мышцы у человека и животных и т. п.

Колебанием называют физический процесс, характеризующийся повторяемостью во времени физических величин, связанных с этим процессом. Движение маятника или качелей, сокращения сердечной мышцы, переменный ток - всё это примеры систем, совершающих колебания.

Колебания считают периодическими, если значения физических величин повторяются через равные промежутки времени, называемые периодом Т. Число полных колебаний, совершаемых системой за единицу времени, называют частотой ν. Очевидно, что Т = 1/ν. Частота измеряется в герцах (Гц). При частоте 1 герц система совершает 1 колебание в секунду.

Простейшим видом колебательного движения являются свободные гармонические колебания. Свободными , или собственными называются колебания, происходящие в системе после того, как она была выведена из положения равновесия внешними силами, которые в дальнейшем участия в движении системы не принимают. Наличие периодически меняющихся внешних сил вызывает в системе вынужденные колебания .

Гармоническими называют свободные колебания, происходящие под действием упругой силы при отсутствии трения. Согласно закону Гука, при малых деформациях сила упругости прямо пропорциональна смещению тела х от положения равновесия и направлена к положению равновесия: F упр. = - κх, где κ - коэффициент упругости, измеряемый в Н/м, а x - смещение тела из положения равновесия.

Силы, не упругие по своей природе, но аналогичные по виду зависимости от смещения, называют квазиупругими (лат. quasi - якобы). Такие силы также вызывают гармонические колебания. Например, квазиупругие силы действуют на электроны в колебательном контуре, вызывая гармонические электромагнитные колебания. Примером квазиупругой силы может также служить составляющая силы тяжести математического маятника при малых углах отклонения его от вертикали.

Уравнение гармонических колебаний . Пусть тело массой m прикреплено к концу пружины, масса которой мала по сравнению с массой тела. Колеблющееся тело называют осциллятором (лат. oscillum- колебание). Пусть осциллятор может свободно и без трения скользить вдоль горизонтальной направляющей, по которой направим ось координат ОХ (рис. 1). Начало координат поместим в точке, соответствующей равновесному положению тела (рис. 1, а). Приложим к телу горизонтальную силу F и сместим его из положения равновесия вправо в точку с координатой х . Растяжение пружины внешней силой вызывает появление в ней силу упругости F ynp. , направленной к положению равновесия (рис. 1, б). Если теперь убрать внешнюю силу F , то под действием силы упругости тело приобретает ускорение а , движется к положению равновесия, а сила упругости уменьшается, становясь равной нулю в положении равновесия. Достигнув положения равновесия, тело, однако, в нем не останавливается и движется влево за счёт своей кинетической энергии. Пружина вновь сжимается, возникает сила упругости, направленная вправо. Когда кинетическая энергия тела перейдет в потенциальную энергию сжатой пружины, груз остановится, затем начнет двигаться вправо, и процесс повторяется.

Таким образом, если при непериодическом движении каждую точку траектории тело проходит только один раз, двигаясь в одном направлении, то при колебательном движении за одно полное колебание в каждой точке траектории, кроме самых крайних, тело бывает дважды: один раз двигаясь в прямом направлении, другой раз -в обратном.

Напишем второй закон Ньютона для осциллятора: ma = F ynp. , где

F упр = –κx (1)

Знак «–» в формуле указывает на то, что смещение и сила имеют противоположные направления, иными словами, сила, действующая на прикрепленный к пружине груз, пропорциональна смещению его из положения равновесия и направлена всегда к положению равновесия. Коэффициент пропорциональности «κ» носит название коэффициента упругости. Численно он равен силе, вызывающей деформацию пружины, при которой её длина изменяется на единицу. Иногда его называют коэффициентом жёсткости .

Так как ускорение есть вторая производная от смещения тела, то это уравнение можно переписать в виде

, или
(2)

Уравнение (2) может быть записано в виде:

, (3)

где обе части уравнения разделены на массу m и введено обозначение:

(4)

Легко проверить подстановкой, что этому уравнению удовлетворяет решение:

х = А 0 cos (ω 0 t + φ 0) , (5)

где А 0 - амплитуда или максимальное смещение груза от положения равновесия, ω 0 - угловая или циклическая частота, которая может быть выражена через период Т собственных колебаний формулой
(см. ниже).

Величину φ = φ 0 + ω 0 t (6), стоящую под знаком косинуса и измеряемую в радианах, называют фазой колебания в момент времени t , а φ 0 - начальная фаза. Фаза представляет собой число, определяющее величину и направление смещения колеблющейся точки в данный момент времени. Из (6) видно, что

. (7)

Таким образом, величина ω 0 определяет быстроту изменения фазы и называется циклической частотой . С обычной чистотой её связывает формула

Если фаза изменяется на 2π радиан, то, как известно из тригонометрии, косинус принимает исходное значение, а следовательно, исходное значение принимает и смещение х . Но гак как время при этом изменяется на один период, то получается, что

ω 0 (t + T ) + φ 0 = (ω 0 t + φ 0) + 2π

Раскрывая скобки и сокращая подобные члены, получим ω 0 T = 2π или
. Но так как из (4)
, то получим:
. (9)

Таким образом, период колебания тела , подвешенного на пружине, как это следует из формулы (8), не зависит от амплитуды колебаний, но зависит от массы тела и от коэффициента упругости (или жесткости) пружины.

Дифференциальное уравнение гармонических колебаний:
,

Собственная круговая частота колебаний, определяемая природой и параметрами колеблющейся системы:


-для материальной точки массой m , колеблющейся под действием квазиупругой силы, характеризующейся коэффициентом упругости (жёсткости) k ;


-для математического маятника, имеющего длину l ;


-для электромагнитных колебаний в контуре с емкостью С и индуктивностью L .

ВАЖНОЕ ЗАМЕЧАНИЕ

Эти формулы верны при малых отклонениях от положения равновесия.

Скорость при гармоническом колебании:

.

Ускорение при гармоническом колебании:

Полная энергия гармонического колебания:

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1

Определение зависимости периода собственных колебаний пружинного маятника от массы груза

1. Подвесьте к одной из пружин груз и выведите маятник из положения равновесия примерно на 1 - 2 см.

2. Предоставив грузу свободно колебаться, измерьте секундомером промежуток времени t , в течение которого маятник совершит n (n = 15 - 25) полных колебаний
. Найдите период колебания маятника, разделив измеренный вами промежуток времени на число колебаний. Для большей точности проведите измерения не менее 3 раз и вычислите среднее значение периода колебания.

Примечание : Следите за тем, чтобы боковые колебания груза отсутствовали, т. е. чтобы колебания маятника были строго вертикальными.

3. Повторите измерения с другими грузами. Результаты измерений запишите в таблицу.

4. Постройте зависимость периода колебаний маятника от массы груза. График будет более простым (прямая линия), если на горизонтальной оси откладывать значения маcсы грузов, а на вертикальной оси - значения квадрата периода.

Задание 2

Определение коэффициента упругости пружины динамическим методом

1. Подвесьте к одной из пружин груз массой 100 г., выведите его из положения равновесия на 1 - 2 см и, измерив время 15 - 20 полных колебаний, определите период колебания маятника с выбранным грузом по формуле
. Из формулы
вычислите коэффициент упругости пружины.

2. Проделайте аналогичные измерения с грузами от 150 г до 800 г (в зависимости от оборудования), определите для каждого случая коэффициент упругости и подсчитайте среднее значение коэффициента упругости пружины. Результаты измерений запишите в таблицу.

Задание 3 . По результатам лабораторной работы (задания 1 - 3):

– найдите значение циклической частоты маятника ω 0 .

– ответьте на вопрос: зависит ли амплитуда колебаний маятника от массы груза.

Возьмите на графике, полученном при выполнении задания 1 , произвольную точку и проведите из неё перпендикуляры до пересечения с осями Om и OT 2 . Определите для этой точки значения m и T 2 и по формуле
вычислите величину коэффициента упругости пружины.

Приложение

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

ПО СЛОЖЕНИЮ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами и амплитудами А 1 и А 2 , происходящих по одной прямой, определяется по формуле

где φ 0, 1 , φ 0, 2 - начальные фазы.

Начальная фаза φ 0 результирующего колебания может быть найдена по формуле

tg
.

Биения , возникающие при сложении двух колебаний x 1 =A cos2πν 1 t , происходящих по одной прямой с различными, но близкими по значению частотами ν 1 и ν 2 , описываются формулой

x = x 1 + x 2 + 2A cosπ (ν 1 – ν 2)t cosπ(ν 1 +ν 2)t .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты с амплитудами А 1 и А 2 и начальными фазами φ 0, 1 и φ 0, 2:

Если начальные фазы φ 0, 1 и φ 0, 2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
. Если же начальные фазы отличаются на π, то уравнение траектории имеет вид
. Это уравнения прямых линий, проходящих через начало координат, иными словами, в этих случаях точка движется по прямой. В остальных случаях движение происходит по эллипсу. При разности фаз
оси этого эллипса расположены по осямО X и О Y и уравнение траектории принимает вид
. Такие колебания называются эллиптическими. При A 1 =A 2 =A x 2 +y 2 =A 2 . Это уравнение окружности, и колебания называются круговыми. При других значениях частот и разностей фаз траектории колеблющейся точки образует причудливой формы кривые, называемые фигурами Лиссажу .

РАЗБОР НЕКОТОРЫХ ТИПОВЫХ ЗАДАЧ

ПО УКАЗАННОЙ ТЕМЕ

Задача 1. Из графика колебаний материальной точки следует, что модуль скорости в момент времени t = 1/3 с равен...


Период гармонического колебания, изображенного на рисунке, равен 2 секундам. Амплитуда этого колебания 18 см. Поэтому зависимость x (t ) можно записать в виде x(t) = 18sinπ t . Скорость равна производной функции х (t ) по времени v (t ) = 18π cosπ t . Подставив t = (1/3) с, получим v (1/3) = 9π (см/с).

Правильным является ответ: 9 π см/с.

Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A 0 . При разности
амплитуда результирующего колебания равна...


Решение существенно упрощается, если использовать векторный метод определения амплитуды и фазы результирующего колебания. Для этого одно из складываемых колебаний представим в виде горизонтального вектора с амплитудой А 1 . Из конца этого вектора построим второй вектор с амплитудой А 2 так, чтобы он образовал угол
с первым вектором. Тогда длина вектора, проведенного из начала первого вектора в конец последнего, будет равна амплитуде результирующего колебания, а угол, образуемый результирующим вектором с первым вектором, будет определять разность их фаз. Векторная диаграмма, соответствующая условию задания, приведена на рисунке. Отсюда сразу видно, что амплитуда результирующего колебания в
раз больше амплитуды каждого из складываемых колебаний.

Правильным является ответ:
.

ТочкаМ одновременно колеблется по гармоническому закону вдоль осей координат ОХ и OY с различными амплитудами, но одинаковыми частотами. При разности фаз π/2 траектория точки М имеет вид:

При заданной в условии разности фаз уравнением траектории является уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (см. теоретические сведения).

Правильным является ответ: 1.

Два одинаково направленных гармонических колебания одного периода с амплитудами A 1 =10 см и А 2 =6 см складываются в одно колебание с амплитудой А рез =14 см. Разность фаз
складываемых колебаний равна...

В этом случае удобно воспользоваться формулой . Подставив в нее данные из условия задания, получим:
.

Этому значению косинуса соответствует
.

Правильным является ответ: .

Контрольные вопросы

1. Какие колебания называются гармоническими? 2. Какой вид имеет график незатухающих гармонических колебаний? 3. Какими величинами характеризуется гармонический колебательный процесс? 4. Приведите примеры колебательных движений из биологии и ветеринарии. 5. Напишите уравнение гармонических колебаний. 6. Как получить выражение для периода колебательного движения пружинного маятника?

ЛИТЕРАТУРА

    Грабовский Р. И. Курс физики. - М.: Высшая школа, 2008, ч. I, § 27-30.

    Основы физики и биофизики. Журавлёв А. И. , Белановский А. С., Новиков В. Э., Олешкевич А. А. и др. - М., Мир, 2008, гл. 2.

    Трофимова Т. И. Курс физики: Учебник для студ. вузов. - М.: МГАВМиБ, 2008. - гл. 18.

    Трофимова Т. И. Физика в таблицах и формулах: Учеб. пособие для студентов вузов. - 2-е изд., испр. - М.: Дрофа, 2004. - 432 с.

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

– это один из частных случаев неравномерного движения. Примеров колебательного движения в жизни много: это и качание качелей, и раскачивание маршрутки на рессорах, и движение поршней в двигателе… Эти движения различаются, но у них есть общее свойство: раз в некоторое время движение повторяется.

Это время называется периодом колебаний .

Рассмотрим один из простейших примеров колебательного движения – пружинный маятник. Пружинный маятник – это пружина, соединённая одним концом с неподвижной стеной, а другим – с подвижным грузом. Для простоты будем считать, что груз может двигаться только вдоль оси пружины. Это реалистичное допущение – в реальных упругих механизмах обычно груз движется вдоль направляющей.

Если маятник не колеблется, и на него не действуют никакие силы, то он находится в положении равновесия. Если его отвести от этого положения и отпустить, то маятник станет колебаться – он будет проскакивать точку равновесия на максимальной скорости и замирать в крайних точках. Расстояние от точки равновесия до крайней точки называется амплитудой , периодом в данной ситуации будет минимальное время между посещениями одной и той же крайней точки.

Когда маятник находится в крайней точке, на него действует сила упругости, стремящаяся вернуть маятник в положение равновесия. Она убывает по мере приближения к равновесию, и в равновесной точке становится равна нулю. Но маятник уже набрал скорость и проскакивает точку равновесия, и сила упругости начинает его тормозить.


В крайних точках у маятника максимальная потенциальная энергия, в точке равновесия – максимальная кинетическая.

В реальной жизни колебания обычно затухают, так как есть сопротивления среды. В таком случает от колебания к колебанию амплитуда уменьшается. Такие колебания называются затухающими .

Если же затухания нет, и колебания происходят из-за начального запаса энергии, то они называются свободными колебаниями .

Тела, участвующие в колебании, и без которых колебания были бы невозможными, вместе называются колебательной системой . В нашем случае колебательная система состоит из грузика, пружины и неподвижной стены. Вообще, колебательной системой можно назвать любую группу тел, способных к свободным колебаниям, то есть таких, в которых при отклонениях появляются силы, возвращающие систему к равновесию.