Болезни Военный билет Призыв

Нормированный r квадрат как найти. Основы анализа данных. Решение средствами табличного процессора Excel

Министерство образования и науки российской федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Дальневосточный федеральный университет

Школа экономики и менеджмента

Кафедра бизнес-информатики и экономико-математических методов

ЛАБОРАТОРНАЯ РАБОТА

по дисциплине «Имитационное моделирование»

Специальность 080801.65 «Прикладная информатика (в экономике)»

РЕГРЕССИОННЫЙ АНАЛИЗ

Рудакова

Ульяна Анатольевна

г. Владивосток

ОТЧЕТ

Задание: рассмотреть процедуру регрессионного анализа на основе данных (цена продажи и жилая площадь) о 23 объектах недвижимости.

Режим работы "Регрессия" служит для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу.

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис команду Анализ данных и инструмент анализа "Регрессия ".

В появившемся диалоговом окне задаем следующие параметры:

1. Входной интервал Y - это диапазон данных по результативному признаку. Он должен состоять из одного столбца.

2. Входной интервал X - это диапазон ячеек, содержащих значения факторов (независимых переменных). Число входных диапазонов (столбцов) должно быть не больше 16.

.Флажок Метки , устанавливается втом случае, если в первой строке диапазона стоит заголовок.

5. Константа ноль. Данный флажок необходимо установить, если линия регрессии должна пройти через начало координат (а0=0).

6. Выходной интервал/ Новый рабочий лист/ Новая рабочая книга - указать адрес верхней левой ячейки выходного диапазона.

.Флажки в группе Остатки устанавливаются, если необходимо включить в выходной диапазон соответствующие столбцы или графики.

.Флажок График нормальной вероятности необходимо сделать активным, если требуется вывести на лист точечный график зависимости наблюдаемых значений Y от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне получаем отчет.

С помощью набора средств анализа данных выполним регрессионный анализ исходных данных.

Инструмент анализа "Регрессия" применяется для подбора параметров уравнения регрессии с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных.

ТАБЛИЦА РЕГРЕССИОННАЯ СТАТИСТИКА

Величина множественный R - это корень из коэффициента детерминации (R-квадрат). Также его называют индексом корреляции или множественным коэффициентом корреляции. Выражает степень зависимости независимых переменных (X1, X2) и зависимой переменной (Y) и равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы. В нашем случае он равен 0,7, что говорит о существенной связи между переменными.

Величина R-квадрат (коэффициент детерминации) , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В нашем случае величина R-квадрат равна 0,48 , т.е. почти 50%, что говорит о слабой подгонке регрессионной прямой к исходным данным.Т.к. найденная величина R-квадрат = 48%<75%, то, следовательно, также можно сделать вывод о невозможности прогнозирования с помощью найденной регрессионной зависимости. Таким образом, модель объясняет всего 48% вариации цены, что говорит о недостаточности выбранных факторов, либо о недостаточном объеме выборки.

Нормированный R-квадрат - это тот же коэффициент детерминации, но скорректированный на величину выборки.

Норм.R-квадрат=1-(1-R-квадрат)*((n-1)/(n-k)),

регрессионный анализ линейный уравнение

где n - число наблюдений; k - число параметров. Нормированный R-квадрат предпочтительнее использовать в случае добавления новых регрессоров (факторов), т.к. при их увеличении будет также увеличиваться значение R-квадрат, однако это не будет свидетельствовать об улучшении модели. Так как в нашем случае полученная величина равна 0,43 (что отличается от R-квадрат всего на 0,05), то можно говорить о высоком доверии коэффициенту R-квадрат.

Стандартная ошибка показывает качество аппроксимации (приближения) результатов наблюдений. В нашем случае ошибка равна 5,1. Рассчитаем в процентах: 5,1/(57,4-40,1)=0,294 ≈ 29% (Модель считается лучше, когда стандартная ошибка составляет <30%)

Наблюдения - указывается число наблюдаемых значений (23).

ТАБЛИЦА ДИСПЕРСИОННЫЙ АНАЛИЗ

Для получения уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии.

В столбце df - приводится число степеней свободы k.

Для остатка это величина, равная n-(m+1), т.е. число исходных точек (23) минус число коэффициентов (2) и минус свободный член (1).

В столбце SS - суммы квадратов отклонений от среднего значения результирующего признака. В нем представлены:

Регрессионная сумма квадратов отклонений от среднего значения результирующего признака теоретических значений, рассчитанных по регрессионному уравнению.

Остаточная сумма отклонений исходных значений от теоретических значений.

Общая сумма квадратов отклонений исходных значений от результирующего признака.

Чем больше регрессионная сумма квадратов отклонений (или чем меньше остаточная сумма), тем лучше регрессионное уравнение аппроксимирует облако исходных точек. В нашем случае остаточная сумма составляет около 50%. Следовательно, уравнение регрессии очень слабо аппроксимирует облако исходных точек.

В столбце MS - несмещенные выборочные дисперсии, регрессионная и остаточная.

В столбце F вычислено значение критериальной статистики для проверки значимости уравнения регрессии.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости - это допустимая вероятность совершить ошибку первого рода - отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет. Обычно уровень значимости принимается равным 5%. Сравнивая полученное значение = 9,4 с табличным значением = 3,5 (число степеней свободы 2 и 20 соответственно) можно говорить о том, что уравнение регрессии значимо (F>Fкр).

В столбце значимость F вычисляется вероятность полученного значения критериальной статистике. Так как в нашем случае это значение = 0,00123, что меньше 0,05 то можно говорить о том, что уравнение регрессии (зависимость) значимо с вероятностью 95%.

Два выше описанных столба показывают надежность модели в целом.

Следующая таблица содержит коэффициенты для регрессоров и их оценки.

Строка Y-пересечение не связана ни с каким регрессором, это свободный коэффициент.

В столбце коэффициенты записаны значения коэффициентов уравнения регрессии. Таким образом, получилось уравнение:

Y=25,6+0,009X1+0,346X2

Регрессионное уравнение должно проходить через центр облака исходных точек: 13,02≤M(b)≤38,26

Далее сравниваем попарно значения столбцов Коэффициенты и Стандартная ошибка. Видно, что в нашем случае, все абсолютные значения коэффициентов превосходят значения стандартных ошибок. Это может свидетельствовать о значимости регрессоров, однако, это грубый анализ. Столбец t-статистика содержит более точную оценку значимости коэффициентов.

В столбце t-статистика содержатся значения t-критерия, рассчитанные по формуле:

t=(Коэффициент)/(Стандартная ошибка)


n-(k+1)=23-(2+1)=20

По таблице Стьюдента находим значение tтабл=2,086. Сравнивая

t с tтабл получаем, что коэффициент регрессора X2 незначим.

Столбец p-значение представляет вероятность того, что критическое значение статистики используемого критерия (статистики Стьюдента) превысит значение, вычисленное по выборке. В данном случае сравниваем p-значения с выбранным уровнем значимости (0.05). Видно, что незначимым можно считать только коэффициент регрессора X2=0.08>0,05

В столбцах нижние 95% и верхние 95% приводятся границы доверительных интервалов с надежностью 95%. Для каждого коэффициента свои границы: Коэффициент tтабл*Стандартная ошибка

Доверительные интервалы строятся только для статистически значимых величин.

ТАБЛИЦА ВЫВОД ОСТАТКА

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Предположение о нормальности остатков допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения включаем функцию график остатков .

На графиках остатков отображаются разности между исходными значениями Y и вычисленными по функции регрессии для каждого значения компонента переменной X1 и X2. Он применяется для определения, является ли приемлемой используемая аппроксимирующая прямая.

График подбора может быть использован для получения наглядного представления о линии регрессии.

Стандартные остатки - нормированные остатки на оценку их стандартного отклонения.

Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса после тире):

; (12.7)

(12.8)

Эти формулы позволяют легко вычислить множественные коэффициенты корреляции при известных значениях коэффициентов парной корреляции r xy , r xz и r yz .

Коэффициент R не отрицателен и всегда находится в пределах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается. Между коэффициентом множественной корреляции, например R y-xz , и двумя коэффициентами парной корреляции r yx и r yz существует следующее соотношение: каждый из парных коэффициентов не может превышать по абсолютной величине R y-xz .

Квадрат коэффициента множественной корреляции R 2 называется коэффициентом множественной детерминации. Он показывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по
F –критерию:

, (12.9)

n – объем выборки,

k – число признаков; в нашем случае k = 3.

Теоретическое значение F –критерия берут из таблицы приложений для ν 1 = k –1 и ν 2 = n–k степеней свободы и принятого уровня значимости. Нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (H 0:R = 0) принимается, если F факт. < F табл . и отвергается, если F факт. ≥ F табл .

Конец работы -

Эта тема принадлежит разделу:

Математическая статистика

Учреждение образования.. гомельский государственный университет.. имени франциска скорины ю м жученко..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Учебное пособие
для студентов вузов, обучающихся по специальности 1-31 01 01 «Биология» Гомель 2010

Предмет и метод математической статистики
Предмет математической статистики – изучение свойств массовых явлений в биологии, экономике, технике и других областях. Эти явления обычно представляются сложными, вследствие разнообразия (варьиров

Понятие случайного события
Статистическая индукция или статистические заключения, как главная составная часть метода исследования массовых явлений, имеют свои отличительные черты. Статистические заключения делают с численно

Вероятность случайного события
Числовая характеристика случайного события, обладающая тем свойством, что для любой достаточно большой серии испытаний частота события лишь незначительно отличается от этой характеристики, называет

Вычисление вероятностей
Часто возникает необходимость одновременно складывать и умножать вероятности. Например, требуется определить вероятность выпадения 5 очков при одновременном бросании 2 кубиков. Искомая сумма вероят

Понятие случайной переменной
Определив понятие вероятности и выяснив ее главные свойства, перейдем к рассмотрению одного из важнейших понятий теории вероятностей – понятия случайной переменной. Допустим, что в результ

Дискретные случайные переменные
Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1

Непрерывные случайные переменные
В противоположность дискретным случайным переменным, рассмотренным в предыдущем подразделе, совокупность возможных значений непрерывной случайной переменной не только не конечна, но и не поддается

Математическое ожидание и дисперсия
Часто возникает необходимость охарактеризовать распределение случайной переменной с помощью одного–двух числовых показателей, выражающих наиболее существенные свойства этого распределения. К таким

Моменты
Большое значение в математической статистике имеют так называемые моменты распределения случайной переменной. В математическом ожидании большие значения случайной величины учитываются недостаточно.

Биномиальное распределение и измерение вероятностей
В этой теме рассмотрим основные типы распределения дискретных случайных переменных. Предположим, что вероятность наступления некоторого случайного события А при единичном испытании равно

Прямоугольное (равномерное) распределение
Прямоугольное (равномерное) распределение - простейший тип непрерывных распределений. Если случайная переменная X может принимать любое действительное значение в интервале (а, b), где а и b – дейст

Нормальное распределение
Нормальное распределение играет основную роль в математической статистике. Это ни в малейшей степени не является случайным: в объективной действительности весьма часто встречаются различные признак

Логарифмически нормальное распределение
Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и &

Средние величины
Из всех групповых свойств наибольшее теоретическое и практическое значение имеет средний уровень, измеряемый средней величиной признака. Средняя величина признака – понятие очень глубокое,

Общие свойства средних величин
Для правильного использования средних величин необходимо знать свойства этих показателей: срединное расположение, абстрактность и единство суммарного действия. По своему численному значени

Средняя арифметическая
Средняя арифметическая, обладая общими свойствами средних величин, имеет свои особенности, которые можно выразить следующими формулами:

Средний ранг (непараметрическая средняя)
Средний ранг определяется для таких признаков, для которых еще не найдены способы количественного измерения. По степени проявления таких признаков объекты могут быть ранжированы, т. е. расположены

Взвешенная средняя арифметическая
Обычно, чтобы рассчитать среднюю арифметическую, складывают все значения признака и полученную сумму делят на число вариантов. В этом случае каждое значение, входя в сумму, увеличивает ее на полную

Средняя квадратическая
Средняя квадратическая вычисляется по формуле: , (6.5) Она равна корню квадратному из суммы

Медиана
Медианой называют такое значение признака, которое разделяет всю группу на две равные части: одна часть имеет значения признака меньшее, чем медиана, а другая – большее. Например, если име

Средняя геометрическая
Чтобы получить среднюю геометрическую для группы с n данными, нужно все варианты перемножить и из полученного произведения извлечь корень n-й степени:

Средняя гармоническая
Средняя гармоническая рассчитывается по формуле. (6.14) Для пяти вариантов: 1, 4, 5, 5 сре

Число степеней свободы
Число степеней свободы равно числу элементов свободного разнообразия в группе. Оно равно числу всех имеющихся элементов изучения без числа ограничений разнообразия. Например, для исследова

Коэффициент вариации
Стандартное отклонение – величина именованная, выраженная в тех же единицах измерения, как и средняя арифметическая. Поэтому для сравнения разных признаков, выраженных в разных единицах из

Лимиты и размах
Для быстрой и примерной оценки степени разнообразия часто применяются простейшие показатели: lim = {min ¸ max} – лимиты, т. е. наименьшее и наибольшее значения признака, p =

Нормированное отклонение
Обычно степень развития признака определяется путем его измерения и выражается определенным именованным числом: 3 кг веса, 15 см длины, 20 зацепок на крыле у пчел, 4% жира в молоке, 15 кг настрига

Средняя и сигма суммарной группы
Иногда бывает необходимо определить среднюю и сигму для суммарного распределения, составленного из нескольких распределений. При этом известны не сами распределения, а только их средние и сигмы.

Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
Для больших выборок (n > 100) вычисляют еще два статистических показателя. Скошенность кривой называется асимметрией:

Вариационный ряд
По мере увеличения численности изучаемых групп все более и более проявляется та закономерность в разнообразии, которая в малочисленных группах была скрыта случайной формой своего проявления.

Гистограмма и вариационная кривая
Гистограмма – это вариационный ряд, представленный в виде диаграммы, в которой различная величина частот изображается различной высотой столбиков. Гистограмма распределения данных представлена на р

Достоверность различия распределений
Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия

Критерий по асимметрии и эксцессу
Некоторые признаки растений, животных и микроорганизмов при объединении объектов в группы дают распределения, значительно отличающиеся от нормального. В тех случаях, когда какие-нибудь при

Генеральная совокупность и выборка
Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования. Если изучается какой-нибудь вид диких жив

Репрезентативность
Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки. Все выборочные данные и сводные показатели имеют значение в каче

Ошибки репрезентативности и другие ошибки исследований
Оценка генеральных параметров по выборочным показателям имеет свои особенности. Часть никогда не может полностью охарактеризовать все целое, поэтому характеристика генеральной совокупности

Доверительные границы
Определять величину ошибок репрезентативности необходимо для того, чтобы выборочные показатели использовать еще и для нахождения возможных значений генеральных параметров. Этот процесс называется о

Общий порядок оценки
Три величины, необходимые для оценки генерального параметра, – выборочный показатель (), критерий надежности

Оценка средней арифметической
Оценка средней величины имеет целью установить величину генеральной средней для изученной категории объектов. Требуемая для этой цели ошибка репрезентативности определяется по формуле:

Оценка средней разности
В некоторых исследованиях в качестве первичных данных берется разность двух измерений. Это может быть в случае, когда каждая особь выборки изучается в двух состояниях – или в разном возрасте, или п

Недостоверная и достоверная оценка средней разности
Такие результаты выборочных исследований, по которым нельзя получить никакой определенной оценки генерального параметра (или он больше нуля, или меньше, или равен нулю), называются недостоверными.

Оценка разности генеральных средних
В биологических исследованиях особое значение имеет разность двух величин. По разности ведется сравнение разных популяций, рас, пород, сортов, линий, семейств, опытных и контрольных групп (метод гр

Критерий достоверности разности
При том большом значении, которое имеет для исследователей получение достоверных разностей, появляется необходимость овладеть методами, позволяющими определить – достоверна ли полученная, реально с

Репрезентативность при изучении качественных признаков
Качественные признаки обычно не могут иметь градаций проявления: они или имеются, или не имеются у каждой из особей, например пол, комолость, наличие или отсутствие каких-нибудь особенностей, уродс

Достоверность разности долей
Достоверность разности выборочных долей определяется так же, как и для разности средних: (10.34)

Коэффициент корреляции
Во многих исследованиях требуется изучить несколько признаков в их взаимной связи. Если вести такое исследование по отношению к двум признакам, то можно заметить, что изменчивость одного признака н

Ошибка коэффициента корреляции
Как и всякая выборочная величина, коэффициент корреляции имеет свою ошибку репрезентативности, вычисляемую для больших выборок по формуле:

Достоверность выборочного коэффициента корреляции
Критерий выборочного коэффициента корреляции определяется по формуле: (11.9) где:

Доверительные границы коэффициента корреляции
Доверительные границы генерального значения коэффициента корреляции находятся общим способом по формуле:

Достоверность разности двух коэффициентов корреляции
Достоверность разности коэффициентов корреляции определяется так же, как и достоверность разности средних, по обычной формуле

Уравнение прямолинейной регрессии
Прямолинейная корреляция отличается тем, что при этой форме связи каждому из одинаковых изменений первого признака соответствует вполне определенное и тоже одинаковое в среднем изменение другого пр

Ошибки элементов уравнения прямолинейной регрессии
В уравнении простой прямолинейной регрессии: у = а + bх возникают три ошибки репрезентативности. 1 Ошибка коэффициента регрессии:

Частный коэффициент корреляции
Частный коэффициент корреляции – это показатель, измеряющий степень сопряженности двух признаков при постоянном значении третьего. Математическая статистика позволяет установить корреляцию

Линейное уравнение множественной регрессии
Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

Корреляционное отношение
Если связь между изучаемыми явлениями существенно отклоняется от линейной, что легко установить по графику, то коэффициент корреляции непригоден в качестве меры связи. Он может указать на отсутстви

Свойства корреляционного отношения
Корреляционное отношение измеряет степень корреляции при любой ее форме. Кроме того, корреляционное отношение обладает рядом других свойств, представляющих большой интерес в статистическом

Ошибка репрезентативности корреляционного отношения
Еще не разработано точной формулы ошибки репрезентативности корреляционного отношения. Обычно приводимая в учебниках формула имеет недостатки, которыми не всегда можно пренебречь. Эта формула не уч

Критерий линейности корреляции
Для определения степени приближения криволинейной зависимости к прямолинейной используется критерий F, вычисляемый по формуле:

Дисперсионный комплекс
Дисперсионный комплекс – это совокупность градаций с привлеченными для исследования данными и средними из данных по каждой градации (частные средние) и по всему комплексу (общая средняя).

Статистические влияния
Статистическое влияние – это отражение в разнообразии результативного признака того разнообразия фактора (его градаций), которое организовано в исследовании. Для оценки влияния фактора нео

Факториальное влияние
Факториальное влияние – это простое или комбинированное статистическое влияние изучаемых факторов. В однофакторных комплексах изучается простое влияние одного фактора при определенных орга

Однофакторный дисперсионный комплекс
Дисперсионный анализ разработан и введен в практику сельскохозяйственных и биологических исследований английским ученым Р. А. Фишером, который открыл закон распределения отношения средних квадратов

Многофакторный дисперсионный комплекс
Ясное представление о математической модели дисперсионного анализа облегчает понимание необходимых вычислительных операций, особенно при обработке данных многофакторных опытов, в которых больше ист

Преобразования
Правильное использование дисперсионного анализа для обработки экспериментального материала предполагает однородность дисперсий по вариантам (выборкам), нормальное или близкое к нему распределение в

Показатели силы влияний
Определение силы влияний по их результатам требуется в биологии, сельском хозяйстве, медицине для выбора наиболее эффективных средств воздействия, для дозировки физических и химических агентов – ст

Ошибка репрезентативности основного показателя силы влияния
Точная формула ошибки основного показателя силы влияния еще не найдена. В однофакторных комплексах, когда ошибка репрезентативности определяется только для одного показателя факториального

Предельные значения показателей силы влияния
Основной показатель силы влияния равен доле одного слагаемого от всей суммы слагаемых. Кроме того, этот показатель равен квадрату корреляционного отношения. По этим двум причинам показатель силы вл

Достоверность влияний
Основной показатель силы влияния, полученный в выборочном исследовании, характеризует, прежде всего, ту степень влияния, которая реально, в действительности, проявилась в группе исследованных объек

Дискриминантный анализ
Дискриминантный анализ является одним из методов многомерного статистического анализа. Цель дискриминантного анализа состоит в том, чтобы на основе измерения различных характеристик (признаков, пар

Постановка задачи, методы решения, ограничения
Предположим, имеется n объектов с m характеристиками. В результате измерений каждый объект характеризуется вектором x1 ... xm, m >1. Задача состоит в том, что

Предположения и ограничения
Дискриминантный анализ «работает» при выполнении ряда предположений. Предположение о том, что наблюдаемые величины – измеряемые характеристики объекта – имеют нормальное распределение. Это

Алгоритм дискриминантного анализа
Решение задач дискриминации (дискриминантный анализ) состоит в разбиении всего выборочного пространства (множества реализации всех рассматриваемых многомерных случайных величин) на некоторое число

Кластерный анализ
Кластерный анализ объединяет различные процедуры, используемые для проведения классификации. В результате применения этих процедур исходная совокупность объектов разделяется на кластеры или группы

Методы кластерного анализа
В практике обычно реализуются агломеративные методы кластеризации. Обычно перед началом классификации данные стандартизуются (вычитается среднее и производится деление на корень квадратный

Алгоритм кластерного анализа
Кластерный анализ – это совокупность методов классификации многомерных наблюдений или объектов, основанных на определении понятия расстояния между объектами с последующим выделением из них групп, &

Суть каузальных методов прогнозирования состоит в установлении математической связи между результирующей и факторными переменными.

Необходимым условием применения каузальных методов прогнозирования является наличие большого объема данных. Если связи между переменными удается описать математически корректно, то точность каузального прогноза будет достаточно высокой.
К каузальным методам прогнозирования относятся:


  • многомерные регрессионные модели,

  • имитационное моделирование.
Наиболее распространенными каузальными методами прогнозирования являются многомерные регрессионные модели.

1.4.1 Многомерные регрессионные модели

Многомерная регрессионная модель – это уравнение с несколькими независимыми переменными.

Для построения многомерной регрессионной модели могут быть использованы различные функции, наибольшее распространение получили линейная и степенная зависимости:

В линейной модели параметры (b 1 , b 2 , … b n) интерпретируются как влияние каждой из независимых переменных на прогнозируемую величину, если все другие независимые переменные равны нулю.

В степенной модели параметры являются коэффициентами эластичности. Они показывают, на сколько процентов изменится в среднем результат (y) с изменением соответствующего фактора на 1% при неизменности действия других факторов. Для расчета параметров уравнений множественной регрессии также используется метод наименьших квадратов.

При построении регрессионных моделей решающую роль играет качество данных. Сбор данных создает фундамент прогнозам, поэтому имеется ряд требований и правил, которые необходимо соблюдать при сборе данных.


  1. Во-первых, данные должны быть наблюдаемыми , т.е. получены в результате замера, а не расчета.

  1. Во-вторых, из массива данных необходимо исключить повторяющиеся и сильно отличающиеся данные . Чем больше неповторяющихся данных и чем однороднее совокупность, тем лучше будет уравнение. Под сильно отличающимися значениями понимается наблюдения исключительно не вписывающиеся в общий ряд. Например, данные о зарплате рабочих выражены четырех- и пятизначными числами (7 000, 10 000, 15 000), но обнаружено одно шестизначное число (250 000). Очевидно, что это ошибка.

  1. Третье правило (требование) – это достаточно большой объем данных . Мнения статистиков относительно того, сколько необходимо данных для построения хорошего уравнения расходятся. По мнению одних, данных необходимо в 4-6 раз больше числа факторов. Другие утверждают, что не менее чем в 10 раз больше числа факторов, тогда закон больших чисел, действуя в полную силу, обеспечивает эффективное погашение случайных отклонений от закономерного характера связи.

Построение многомерной регрессионной модели в MS Excel
В электронных таблицах Excel имеется возможность построения только лишь линейной многомерной регрессионной модели.
, (1.19)
Для этого необходимо выбрать пункт «Анализ данных», а затем в появившемся окне - инструмент «регрессия»


Рисунок 1.45 – Диалоговое окно инструмента «Регрессия»
В появившемся окне необходимо заполнить ряд полей, в том числе:


  • Входной интервал Y –диапазон данных, из одного столбца, содержащих значения результирующей переменной Y.

  • Входной интервал Х – это диапазон данных, содержащих значения факторных переменных.

Если первая строка или первый столбец входного интервала содержит заголовки, то необходимо установить флажок в поле «метки» .

По умолчанию применяется уровень надежности 95%. Если хотите установить другой уровень, установите флажок и в поле рядом введите желаемый уровень надежности.

Флажок «Константа-ноль» необходимо пометить только в том случае, если вы хотите получить уравнение регрессии без свободного члена а , так чтобы линия регрессии прошла через начала координат.
Вывод результатов расчетов может быть организован 3 способами:


  • в диапазон ячеек этого рабочего листа (для этого в поле «Выходной диапазон» определите левую верхнюю ячейку диапазона, куда будут выводиться результаты расчетов);

  • на новый рабочий лист (в поле рядом можно ввести желаемое название этого листа);

  • в новую рабочую книгу .

Установка флажков «Остатки» и «Стандартизированные остатки» заказывает их включение в выходной диапазон.
Чтобы построить график остатков для каждой независимой переменной, установите флажок «График остатков». Остатки иначе называют ошибками прогнозирования. Они определяются как разность между фактическими и прогнозируемыми значениями Y.
Интерпретация графиков остатков
В графиках остатков не должно быть закономерности. Если закономерность прослеживается, то это значит, что в модель не включен какой-то не известный нам, но закономерно действующий фактор, о которых нет данных.

При установке флажка «График подбора» будет выведена серия графиков, показывающих насколько хорошо теоретическая линия регрессии подобрана к наблюдаемым, т.е. фактическим данным.

Интерпретация графиков подбора
В Excel на графиках подбора красными точками обозначаются теоретические значения Y , синими точками - исходные данные. Если красные точки хорошо накладываются на синие точки, то это визуально свидетельствует об удачном уравнении регрессии.
Необходимым этапом прогнозирования на основе многомерных регрессионных моделей является оценка статистической значимости уравнения регрессии, т.е. пригодности построенного уравнения регрессии для использования в целях прогнозирования. Для решения этой задачи в MS Excel рассчитывается ряд коэффициентов. А именно:


  1. Множественный коэффициент корреляции

Характеризует тесноту и направленность связи между результирующей и несколькими факторными переменными. При двухфакторной зависимости множественный коэффициент корреляции рассчитывается по формуле:
, (1.20)


  1. Множественный коэффициент детерминации ( R 2 ).

R 2 – это есть доля вариации теоретической величины относительно фактических значений у, объясненная за счет включенных в модель факторов. Остальная доля теоретических значений зависит от других, не участвующих в модели факторов. R 2 может принимать значения от 0 до 1. Если , то качество модели высокое. Этот показатель особенно полезен для сравнения нескольких моделей и выбора наилучшей.


  1. Нормированный коэффициент детерминации R 2

У показателя R 2 есть недостаток, состоящий в том, что большие значения коэффициента детерминации могут достигаться благодаря малому числу наблюдений. Нормированный обеспечивает информацией о том, какое значение вы могли бы получить в другом наборе данных значительно большего объема, чем в данном случае.

Нормированный рассчитывается по формуле:

, (1.21)

где - нормированный множественный коэффициент детерминации,

Множественный коэффициент детерминации,

Объем совокупности,

Количество факторных переменных.


  1. Стандартная ошибка регрессии указывает приблизительную величину ошибки прогнозирования. Используется в качестве основной величины для измерения качества оцениваемой модели. Рассчитывается по формуле:
, (1.22)

где - сумма квадратов остатков,

Число степеней свободы остатков.
Т.е стандартная ошибка регрессии показывает величину квадрата ошибки, приходящейся на одну степень свободы.


ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0.973101

R-квадрат

0.946926

Нормированный R-квадрат

0.940682

Стандартная ошибка

0.59867

Наблюдения

20

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

2

108.7071

54.35355

151.6535

1.45E-11

Остаток

17

6.092905

0.358406

Итого

19

114.8

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95.0%

Верхние 95.0%

Y-пересечение

1.835307

0.471065

3.89608

0.001162

0.841445

2.829169

0.841445

2.829169

x1

0.945948

0.212576

4.449917

0.000351

0.49745

1.394446

0.49745

1.394446

x2

0.085618

0.060483

1.415561

0.174964

-0.04199

0.213227

-0.04199

0.213227

Метод дисперсионного анализа состоит в разложении общей суммы квадратов отклонений переменной у от среднего значения на две части:


  1. объясненную регрессией (или факторную),

  2. остаточную.
, (1.2 3)
Пригодность регрессионной модели для прогнозирования зависит от того, какая часть общей вариации признака y приходится на вариацию объясненную регрессией. Очевидно, что если сумма квадратов отклонений объясненная регрессией будет больше остаточной, то делают вывод о статистической значимости уравнения регрессии. Это равносильно тому, что коэффициент детерминации приближается к единице.
Обозначения в таблице «Дисперсионный анализ»:
Второй столбец таблицы называется и означает число степеней свободы. Для общей дисперсии число степеней свободы равно: , для факторной дисперсии (или дисперсии, объясненной регрессией) , для остаточной дисперсии .

где n – это кол-во наблюдений,

m – кол-во факторных переменных модели.
Третий столбец таблицы называется . В нем представлена сумма квадратов отклонений. Общая сумма квадратов отклонений определяется по формуле:

, (1.24)
Факторная сумма квадратов:

, (1.26)
Четвертый столбец называется - среднее значение квадратов отклонений. Определяется по формуле:

С помощью F-критерия Фишера определяется статистическая значимость коэффициента детерминации уравнения регрессии. Для этого выдвигается нулевая гипотеза, которая утверждает, что между результирующей и факторными переменными связь отсутствует . Это возможно лишь в том случае, когда все параметры уравнения множественной линейной регрессии и коэффициент корреляции равны нулю.

Для проверки этой гипотезы необходимо рассчитать фактическое значение F-критерия Фишера и сравнить его с табличным. Фактическое значение F-критерия рассчитывается по формуле:

, (1.28)

Выбирается из специальных статистических таблиц по:


  • заданному уровню значимости () и

  • числу степеней свободы.

В MS Excel табличное значение F-критерия может быть определено с помощью функции: =FРАСПОБР(вероятность; степени свободы1; степени свободы2)

Например: =FРАСПОБР(0,05;df1;df2)
Уровень значимости 1 выбирается на тот же, на котором вычислялись параметры регрессионной модели. По умолчанию установлено 95%.

Если , то выдвинутая гипотеза отклоняется и признается статистическая значимость уравнения регрессии. В случае особо важных прогнозов табличное значение F-критерия рекомендуется увеличить в 4 раза, то есть проверяется условие:
=151.65; = 3.59
Расчетное значение значительно превышает табличное значение. Это значит, что коэффициент детерминации значимо отличается от нуля, поэтому гипотезу об отсутствии регрессионной зависимости следует отклонить.
Теперь оценим значимость коэффициентов регрессии на основе t -критериия Стьюдента. Он позволяет определить, какие из факторных переменных (х) оказывают наибольшее влияние на результирующую переменную (y).

Стандартные ошибки обычно обозначаются . Нижний индекс обозначает параметр уравнения регрессии, для которого рассчитана эта ошибка

Рассчитывается по формуле:

, (1.29)

где - СКО для результирующей переменной,

СКО для признака ,

Коэффициент детерминации для уравнения множественной

регрессии,

Коэффициент детерминации для зависимости фактора со

всеми другими факторами уравнения.

Число степеней свободы для остаточной суммы квадратов

отклонений.
В MS Excel стандартные ошибки рассчитываются автоматически (располагаются в 3-ем столбце 3-ей таблицы).
Фактическое значение t -критерия Стьюдента в MS Excel располагается в 4-ом столбце 3-ей таблицы и называется t-статистика.
(4 столбец) = (2 столбец) / (3 столбец)

t-статистика = Коэффициенты/ Стандартная ошибка
Табличное значение t -критерия Стьюдента зависит от принятого уровня значимости (обычно ; 0,05; 0,01) и числа степеней свободы .

где n – число единиц совокупности,

m – число факторов в уравнении.
В MS Excel табличное значение критерия Стьюдента может быть определено с помощью функции:

СТЬЮДРАСПОБР(вероятность; число степеней свободы)
Например: =СТЬЮДРАСПОБР(0,05;7)
Если , то делается вывод, что коэффициент уравнения регрессии является статистически значимым (надежным) и его можно включать в модель и использовать для прогнозирования.

1.4.2 Метод имитационного моделирования Монте-Карло

Метод имитационного моделирования получил свое название в честь города Монте-Карло, расположенного в княжестве Монако, одного из самых маленьких государств мира, расположенного на берегу Средиземного моря, около границы Франции и Италии.

Метод имитационного моделирования Монте-Карло предполагает генерирование случайных значений в соответствии с заданными ограничениями. Приступая к проведению имитационного моделирования, прежде всего, необходимо разработать экономико-математическую модель (ЭММ) прогнозируемого показателя, отражающего взаимосвязь между факторными переменными, а также степень и характер их влияния на результат. Поскольку в условиях современной рыночной конъюнктуры на субъект экономических отношений оказывают одновременное воздействие множество факторов различной природы и направленности и степень их воздействия не является детерминированной, представляется необходимым разделить переменные ЭММ на две группы: стохастические и детерминированные;

Далее следует определить типы вероятностных распределений для каждой стохастической переменной и соответствующие входные параметры, выполнить имитацию значений стохастических переменных с использованием генератора случайных чисел MS Excel или иных программных средств.

Инструмент «генерация случайных чисел» доступен пользователям MS Excel 2007 после активизации надстройки Пакет анализа . Порядок активизации надстройки описан выше (см. стр.10, рис.1.5-1.8). Для выполнения имитационного моделирования в меню ДАННЫЕ необходимо выбрать пункт «Анализ данных» , в появившемся диалоговом окне из списка выбрать инструмент «Генерация случайных чисел» и щелкнуть ОК.

Рисунок 1.46 - Интерфейс меню анализа данных
В появившемся диалоговом окне необходимо для каждой стохастической переменной выбрать тип вероятностного распределения и задать соответствующие входные параметры.

Рисунок 1.47 - Диалоговое окно генератора случайных чисел
Данные этап является одним из наиболее сложных, поэтому при его выполнении необходимо использовать знания и опыт экспертов. Выбор типа вероятностного распределения также может осуществляться на основе имеющейся статистической информации. На практике чаще всего используют такие виды вероятностных распределений как нормальное, треугольное и равномерное.

Нормальное распределение (или закон Муавра-Гаусса-Лапласа) предполагает, что варианты прогнозируемого параметра тяготеют к среднему значению. Значения переменной, существенно отличающиеся от среднего, то есть находящиеся в «хвостах» распределения, имеют малую вероятность.

Треугольное распределение представляет собой производную от нормального распределения и предполагает линейно нарастающее, по мере приближения к среднему значению, распределение.

Равномерное распределение используется в том случае, когда все значения варьируемого показателя имеют одинаковую вероятность реализации.

При важности переменной и невозможности подобрать закон распределения её можно рассматривать с точки зрения дискретного распределения. Перечисленные выше виды вероятностных распределений требуют определения входных параметров, представленных в таблице1.11
Таблица 1.11 - Входные параметры основных видов вероятностных распределений


Вид вероятностного

распределения


Входные параметры

1 Нормальное распределение

  • среднее значение;

  • стандартное отклонение;

2 Треугольное распределение

  • среднее значение;


3 Равномерное распределение

  • пределы возможного диапазона значений;

4 Дискретное распределение

В результате проведения серии экспериментов будет получено распределение значений стохастических переменных, на основании которых следует рассчитать значение прогнозируемого показателя.

Следующим необходимым этапом является проведение экономико-статистического анализа результатов имитационного моделирования, при котором рекомендуется рассчитывать следующие статистические характеристики:


  • среднее значение;

  • среднеквадратическое отклонение;

  • дисперсию;

  • минимальное и максимальное значение;

  • размах колебаний;

  • коэффициент асимметрии;

  • эксцесс.
Указанные выше показатели могут быть использованы для проверки гипотезы о нормальном распределении. В случае подтверждения гипотезы для составления интервального прогноза может быть использовано правило «трех сигм». Правило «трех сигм» гласит, что если случайная величина X подчинена нормальному закону распределения с параметрами и , то практически достоверно, что её значения заключены в интервале , то есть . Для повышения наглядности и упрощения интерпретации целесообразно построить гистограмму.


Рисунок 1.48 - Гистограмма значений прогнозируемого показателя

Реализация указанных этапов позволит получить вероятностную оценку значений прогнозируемого показателя (интервальный прогноз).

Построение линейной регрессии, оценивание ее параметров и их значимости можно выполнить значительнее быстрей при использовании пакета анализа Excel (Регрессия). Рассмотрим интерпретацию полученных результатов в общем случае (k объясняющих переменных) по данным примера 3.6.

В таблице регрессионной статистики приводятся значения:

Множественный R – коэффициент множественной корреляции ;

R - квадрат – коэффициент детерминации R 2 ;

Нормированный R - квадрат – скорректированный R 2 с поправкой на число степеней свободы;

Стандартная ошибка – стандартная ошибка регрессии S ;

Наблюдения – число наблюдений n .

В таблице Дисперсионный анализ приведены:

1. Столбец df - число степеней свободы, равное

для строки Регрессия df = k ;

для строкиОстаток df = n k – 1;

для строкиИтого df = n – 1.

2. Столбец SS – сумма квадратов отклонений, равная

для строки Регрессия ;

для строкиОстаток ;

для строкиИтого .

3. Столбец MS дисперсии, определяемые по формуле MS = SS /df :

для строки Регрессия – факторная дисперсия;

для строкиОстаток остаточная дисперсия.

4. Столбец F – расчетное значение F -критерия, вычисляемое по формуле

F = MS (регрессия)/MS (остаток).

5. Столбец Значимость F –значение уровня значимости, соответствующее вычисленной F -статистике.

Значимость F = FРАСП(F- статистика, df (регрессия), df (остаток)).

Если значимость F < стандартного уровня значимости, то R 2 статистически значим.

Коэффи-циенты Стандартная ошибка t-cта-тистика P-значение Нижние 95% Верхние 95%
Y 65,92 11,74 5,61 0,00080 38,16 93,68
X 0,107 0,014 7,32 0,00016 0,0728 0,142

В этой таблице указаны:

1. Коэффициенты – значения коэффициентов a , b .

2. Стандартная ошибка –стандартные ошибки коэффициентов регрессии S a , S b .



3. t- статистика – расчетные значения t -критерия, вычисляемые по формуле:

t-статистика = Коэффициенты / Стандартная ошибка.

4.Р -значение (значимость t ) – это значение уровня значимости, соответствующее вычисленной t- статистике.

Р -значение = СТЬЮДРАСП (t -статистика, df (остаток)).

Если Р -значение < стандартного уровня значимости, то соответствующий коэффициент статистически значим.

5. Нижние 95% и Верхние 95% – нижние и верхние границы 95 %-ных доверительных интервалов для коэффициентов теоретического уравнения линейной регрессии.

ВЫВОД ОСТАТКА
Наблюдение Предсказанное y Остатки e
72,70 -29,70
82,91 -20,91
94,53 -4,53
105,72 5,27
117,56 12,44
129,70 19,29
144,22 20,77
166,49 24,50
268,13 -27,13

В таблице ВЫВОД ОСТАТКА указаны:

в столбце Наблюдение – номер наблюдения;

в столбце Предсказанное y – расчетные значения зависимой переменной;

в столбце Остатки e – разница между наблюдаемыми и расчетными значениями зависимой переменной.

Пример 3.6. Имеются данные (усл. ед.) о расходах на питание y и душевого дохода x для девяти групп семей:

x
y

Используя результаты работы пакета анализа Excel (Регрессия), проанализируем зависимость расходов на питание от величины душевого дохода.

Результаты регрессионного анализа принято записывать в виде:

где в скобках указаны стандартные ошибки коэффициентов регрессии.

Коэффициенты регрессии а = 65,92 и b = 0,107. Направление связи между y и x определяет знак коэффициентарегрессии b = 0,107, т.е. связь является прямой и положительной. Коэффициент b = 0,107 показывает, что при увеличении душевого дохода на 1 усл. ед. расходы на питание увеличиваются на 0,107 усл. ед.

Оценим значимость коэффициентов полученной модели. Значимость коэффициентов (a, b ) проверяется по t -тесту:

Р-значение (a ) = 0,00080 < 0,01 < 0,05

Р-значение (b ) = 0,00016 < 0,01 < 0,05,

следовательно, коэффициенты (a, b ) значимы при 1 %-ном уровне, а тем более при 5 %-ном уровне значимости. Таким образом, коэффициенты регрессии значимы и модель адекватна исходным данным.

Результаты оценивания регрессии совместимы не только с полученными значениями коэффициентов регрессии, но и с некоторым их множеством (доверительным интервалом). С вероятностью 95 % доверительные интервалы для коэффициентов есть (38,16 – 93,68) для a и (0,0728 – 0,142) для b.

Качество модели оценивается коэффициентом детерминации R 2 .

Величина R 2 = 0,884 означает, что фактором душевого дохода можно объяснить 88,4 % вариации (разброса) расходов на питание.

Значимость R 2 проверяется по F- тесту: значимость F = 0,00016 < 0,01 < 0,05, следовательно, R 2 значим при 1 %-ном уровне, а тем более при 5 %-ном уровне значимости.

В случае парной линейной регрессии коэффициент корреляции можно определить как . Полученное значение коэффициента корреляции свидетельствует, что связь между расходами на питание и душевым доходом очень тесная.

Множественный коэффициент корреляции используется в качестве меры степени тесноты статистической связи между результирующим показателем (зависимой переменной) y и набором объясняющих (независимых) переменных или, иначе говоря, оценивает тесноту совместного влияния факторов на результат.

Множественный коэффициент корреляции может быть вычислен по ряду формул 5 , в том числе:

    с использованием матрицы парных коэффициентов корреляции

, (3.18)

где r - определитель матрицы парных коэффициентов корреляции y ,
,

r 11 - определитель матрицы межфакторной корреляции
;

. (3.19)

Для модели, в которой присутствуют две независимые переменные, формула (3.18) упрощается

. (3.20)

Квадрат множественного коэффициента корреляции равен коэффициенту детерминации R 2 . Как и в случае парной регрессии, R 2 свидетельствует о качестве регрессионной модели и отражает долю общей вариации результирующего признака y , объясненную изменением функции регрессии f (x ) (см. 2.4). Кроме того, коэффициент детерминации может быть найден по формуле

. (3.21)

Однако использование R 2 в случае множественной регрессии является не вполне корректным, так как коэффициент детерминации возрастает при добавлении регрессоров в модель. Это происходит потому, что остаточная дисперсия уменьшается при введении дополнительных переменных. И если число факторов приблизится к числу наблюдений, то остаточная дисперсия будет равна нулю, и коэффициент множественной корреляции, а значит и коэффициент детерминации, приблизятся к единице, хотя в действительности связь между факторами и результатом и объясняющая способность уравнения регрессии могут быть значительно ниже.

Для того чтобы получить адекватную оценку того, насколько хорошо вариация результирующего признака объясняется вариацией нескольких факторных признаков, применяют скорректированный коэффициент детерминации

(3.22)

Скорректированный коэффициент детерминации всегда меньше R 2 . Кроме того, в отличие от R 2 , который всегда положителен,
может принимать и отрицательное значение.

Пример (продолжение примера 1) . Рассчитаем множественный коэффициент корреляции, согласно формуле (3.20):

Величина множественного коэффициента корреляции, равного 0,8601, свидетельствует о сильной взаимосвязи стоимости перевозки с весом груза и расстоянием, на которое он перевозится.

Коэффициент детерминации равен: R 2 =0,7399.

Скорректированный коэффициент детерминации рассчитываем по формуле (3.22):

=0,7092.

Заметим, что величина скорректированного коэффициента детерминации отличается от величины коэффициента детерминации.

Таким образом, 70,9% вариации зависимой переменной (стоимости перевозки) объясняется вариацией независимых переменных (весом груза и расстоянием перевозки). Остальные 29,1% вариации зависимой переменной объясняются факторами, неучтенными в модели.

Величина скорректированного коэффициента детерминации достаточно велика, следовательно, мы смогли учесть в модели наиболее существенные факторы, определяющие стоимость перевозки. 